Utah State Systemic Improvement Plan (SSIP)

Brad Smith
State Superintendent of Public Instruction

Glenna Gallo
Director of Special Education

Utah State Office of Education
250 East 500 South
PO Box 144200
Salt Lake City, UT 84114-4200

April 2015
Utah State Board of Education

250 East 500 South
P.O. Box 144200
Salt Lake City, UT 84114-4200

[Utah State Board of Education Website](http://www.schools.utah.gov)

<table>
<thead>
<tr>
<th>District</th>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terryl Warner</td>
<td>Hyrum, UT 84319</td>
<td>435-512-5241</td>
<td>terryl.warner6@gmail.com</td>
</tr>
<tr>
<td>2</td>
<td>Spencer F. Stokes</td>
<td>Ogden, UT 84403</td>
<td>801-923-4908</td>
<td>utahboard2@gmail.com</td>
</tr>
<tr>
<td>3</td>
<td>Linda B. Hansen</td>
<td>West Valley City, UT 84120</td>
<td>801-966-5492</td>
<td>linda.hansen@schools.utah.gov</td>
</tr>
<tr>
<td>4</td>
<td>David L. Thomas</td>
<td>South Weber, UT 84405</td>
<td>801-479-7479</td>
<td>dthomas@summitcounty.org</td>
</tr>
<tr>
<td>5</td>
<td>Laura Belnap</td>
<td>Bountiful, UT 84010</td>
<td>801-699-7588</td>
<td>lbelnap@utahonline.org</td>
</tr>
<tr>
<td>6</td>
<td>Brittney Cummins</td>
<td>West Valley City, UT 84120</td>
<td>801-969-5712</td>
<td>b4cummins@gmail.com</td>
</tr>
<tr>
<td>7</td>
<td>Leslie B. Castle</td>
<td>Salt Lake City, UT 84108</td>
<td>801-581-9752</td>
<td>lesliebrookscastle@gmail.com</td>
</tr>
<tr>
<td>8</td>
<td>Jennifer A. Johnson</td>
<td>Murray, UT 84107</td>
<td>801-742-1616</td>
<td>jj@jenniferajohnson.com</td>
</tr>
<tr>
<td>9</td>
<td>Joel Wright</td>
<td>Cedar Hills, UT 84062</td>
<td>801-426-2120</td>
<td>joel.wright.uted@gmail.com</td>
</tr>
<tr>
<td>10</td>
<td>David L. Crandall</td>
<td>Draper, UT 84020</td>
<td>801-232-0795</td>
<td>crandall@xmission.com</td>
</tr>
<tr>
<td>11</td>
<td>Jefferson Moss</td>
<td>Saratoga Springs, UT 84045</td>
<td>801-916-7386</td>
<td>jeffersonRmoss@gmail.com</td>
</tr>
<tr>
<td>12</td>
<td>Dixie L. Allen</td>
<td>Vernal, UT 84078</td>
<td>435-789-0534</td>
<td>dixieleeallen@gmail.com</td>
</tr>
<tr>
<td>13</td>
<td>C. Mark Openshaw</td>
<td>Provo, UT 84604</td>
<td>801-377-0790</td>
<td>markopenshaw@gmail.com</td>
</tr>
<tr>
<td>14</td>
<td>Mark Huntsman</td>
<td>Fillmore, UT 84631</td>
<td>435-979-4301</td>
<td>mhuntsman@sunrise-eng.com</td>
</tr>
<tr>
<td>15</td>
<td>Barbara W. Corry</td>
<td>Cedar City, UT 84720</td>
<td>435-586-3050</td>
<td>barbara.corry@schools.utah.gov</td>
</tr>
<tr>
<td>*</td>
<td>Teresa L. Theurer</td>
<td>North Logan, UT 84341</td>
<td>435-753-0740</td>
<td>teresatheurer1@gmail.com</td>
</tr>
<tr>
<td>*</td>
<td>Marlin K. Jensen</td>
<td>Huntsville, UT 84317</td>
<td>801-718-0858</td>
<td>jensenmk@ldschurch.org</td>
</tr>
<tr>
<td>**</td>
<td>Steven R. Moore</td>
<td>Perry, UT 84302</td>
<td>435-239-8620</td>
<td>smoore48@gmail.com</td>
</tr>
<tr>
<td>***</td>
<td>Freddie Cooper</td>
<td>Clearfield, UT 84015</td>
<td>801-773-2426</td>
<td>freddiecooper1@comcast.net</td>
</tr>
<tr>
<td>****</td>
<td>Nancy Tingey</td>
<td>Sandy, UT 84093</td>
<td>801-598-1638</td>
<td>tingey@burgoyne.com</td>
</tr>
<tr>
<td>*****</td>
<td>Kristin Elinkowski</td>
<td>Layton, UT 84040</td>
<td>801-941-1789</td>
<td>kelinkowski@msn.com</td>
</tr>
<tr>
<td>USBE</td>
<td>Brad C. Smith</td>
<td>Chief Executive Officer</td>
<td>801-538-7510</td>
<td>brad.smith@schools.utah.gov</td>
</tr>
<tr>
<td>USBE</td>
<td>Lorraine Austin</td>
<td>Secretary to the Board</td>
<td>801-538-7517</td>
<td>lorraine.austin@schools.utah.gov</td>
</tr>
</tbody>
</table>

* = Board of Regents Representative Appointment
** = UCAT Representative Appointment
*** = CMAC Advisory Representative Appointment
**** = USBA Advisory Representative Appointment
***** = State Charter School Board Representative Appointment
Table of Contents

Introduction ... 8

Executive Summary.. 9

Stakeholder Involvement and Engagement in the SSIP ... 13

Stakeholder Involvement and Engagement in SSIP, Phase I ... 13

Historical Stakeholder Involvement Process and Need to Broaden Representation 14

Stakeholder Consensus on Contributing Factors to Current Student Outcomes 15

Summary of Stakeholder Consensus, Aligned with State Systems ... 21

Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II– III and SEA ... 22

Appreciation for Assistance in Phase I ... 22

Data Analysis (Broad and In-Depth) at State and LEA Levels ... 23

Stakeholder Involvement and Engagement in Data Analysis .. 23

Statewide Assessment Data Analysis ... 26

SPP/APR and 618 Data Analysis .. 29

Fiscal Data Analysis .. 33

PD/TA Data Analysis .. 35

Quality Standards and Governance Data Analysis ... 36

Accountability, Monitoring, and Dispute Resolution Data Analyses ... 36

Accountability ... 36

Readiness ... 38

Growth .. 38

Outcomes ... 38

Annual Measurable Objectives (AMOs) .. 39

Subgroup Accountability ... 39

School Grading and PACE Report ... 39

Monitoring and Dispute Resolution .. 40

Data Quality .. 41

Need for Additional Data Analysis, Use, and PD/TA ... 42

Summary of Data Analysis, Aligned with State Systems and Stakeholder Involvement and Engagement ... 43

Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II– III and SEA ... 45

Appreciation for Assistance with Data Analysis .. 45

State Infrastructure Analysis .. 46
Stakeholder Involvement and Engagement in Infrastructure Analysis ... 46
Infrastructure Strengths ... 48
Infrastructure Gaps ... 54
Infrastructure Alignment with Data Analysis, SiMR, Improvement Strategies, and Theory of Action ... 55
Summary of Infrastructure Analysis, Aligned with State Systems, Data Analysis, and Stakeholder Input .. 56
Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA Appreciation for Assistance with Infrastructure Analysis .. 60
State-identified Measurable Result (SiMR) ... 62
Stakeholder Involvement and Engagement in the SiMR ... 62
Identifying Utah’s SiMR .. 64
SiMR Target Setting ... 64
Selecting a Subgroup for Broad Coherent Improvement Strategies ... 65
Confirmation of Potential Impact of SiMR Subgroup on State Results .. 68
LEA Selection for Participation in the SSIP and SiMR, Evaluation and Plan for Scaling Up 69
SiMR Baseline Data and Targets .. 70
Alignment of SiMR with Utah’s Accountability System and SPP/APR .. 73
Strategies, and Theory of Action ... 73
Analysis, and Stakeholder Input ... 73
Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA Appreciation for Assistance with SiMR Selection .. 74
Selection of Broad Coherent Improvement Strategies ... 75
Stakeholder Involvement and Engagement in Selection of Improvement Strategies 75
Broad Coherent Improvement Strategy 1: High Expectations and Beliefs 78
Inclusion in Grade-Level Core, Assessment, Graduation Requirements, and College and Career Ready (CCR) Plans .. 79
Leadership .. 79
Preservice and Inservice Professional Learning .. 80
Data and Evidence-Based Practices and Decisions ... 80
Active Engagement of All School Personnel ... 81
IEP Team Decisions ... 81
Fiscal Support .. 81
Table of Figures and Tables
Figure 1: Root Cause Concerns/Broad Coherent Improvement Strategies ... 10
Figure 2: Root Cause Concerns/Broad Coherent Improvement Strategies Including Gaps from Infrastructure and Data Analyses ... 11
Figure 3: The Collaboration Continuum ... 15
Table 1: Effective Evidence-Based Instructional Strategies .. 17
Figure 4: Using Utah Core Standards to Align Instruction within a Multi-Tiered System of Supports (MTSS) ... 18
Table 2: Stakeholder Consensus Aligned with State Systems ... 22
Table 3: Stakeholder Involvement throughout SSIP Development, Phase I ... 23
Table 4: Utah SAGE Results in Mathematics 2013–2014, Grades 3-8 and 10 ... 26
Table 5: Utah SAGE Results for Students with Disabilities in Mathematics 2013–2014 by Grade ... 27
Figure 5: Multi-Year Review of Students with Disabilities Taking ELA and Math Statewide Assessments .. 27
Figure 6: Mathematics Subtest Proficiency Rates for all Subgroups .. 29
Table 6: FFY 2013 SPP/APR Summary .. 29
Figure 7: Post-school Outcomes FFY 2013 ... 31
Figure 8: Students with Disabilities—Special Education Service Time ... 32
Figure 9: Students with Disabilities—Percent of Day in General Education Settings .. 32
Figure 10: State Budget FY 2015 .. 33
Figure 11: WPU Value History ... 34
Figure 12: Structure of Elementary and Middle School Accountability Model ... 37
Figure 13: Structure of High School Accountability Model ... 37
Table 7: Stakeholder Involvement throughout Data Analysis of State Systems ... 43
Table 8: Stakeholder Involvement throughout Infrastructure Analysis .. 46
Figure 14: Alignment of PD/TA, UMTSS, and RDA Support .. 52
Figure 15: Proficiency of Students with Disabilities Grades 6–8 .. 62
Figure 16: Proficiency Levels of Students with Disabilities Grades 6–8 ... 66
Figure 17: Students with Disabilities—Mathematics Proficiency Levels and Access to General Education Grades 6–8 .. 66
Figure 18: Students with Disabilities Grades 6–8 Spending 80% or More in General Education and Scoring “Approaching Proficient” by Disability Type .. 67
Figure 19: Mathematics Proficiency of Students with SLI or SLD Spending 80% or More in General Education .. 67
Table 11: Achievement Gap Between Students with Disabilities and Nondisabled Peers Grades 3–8, 10 ... 67
Table 12: Achievement Gap Between Students with SLI or SLD and Nondisabled Peers in Grades 6-8 ... 68
Table 13: Five Year Growth to Close the Achievement Gap .. 69
Table 14: Count of Proficiency Required Annually to Close the Achievement Gap 69
Table 15: Impact of Growth in SLI or SLD Target Group on the Proficiency Rate of All Students with Disabilities ... 69
Table 16: LEAs Identified as Candidates for Early Implementation of Coherent Improvement Strategies .. 70
Table 17: Proficiency of Students with SLI or SLD in Early Implementation LEAs 70
Table 18: Scaled Increase in Proficiency Needed in Early Implementation LEAs to Achieve SiMR ... 71
Figure 20: Percent of Students with SLI or SLD Approaching Proficient Overall and Proficient on at Least One Subtest ... 71
Figure 21: Students with SLI or SLD in Early Implementation LEAs Approaching Proficient by Access to General Education Setting ... 72
Table 19: Sample Data Used to Identify School Readiness for Coherent Improvement Strategies ... 73
Table 20: Stakeholder Involvement throughout Selection of Broad Coherent Improvement Strategies ... 75
Figure 22: Framework for Coherence ... 91
Table 21: Stakeholder Involvement Throughout the Design of Utah’s Theory of Action 93
Figure 23: Visual Representation of Utah’s Theory of Action ... 96
Introduction

This document represents Utah’s Phase I plan for the State Systemic Improvement Plan (SSIP), and describes the state system and its capacity to assist Local Education Agencies (LEAs) to develop the needed capacity to improve outcomes for students with disabilities. These improvement efforts align with the Individuals with Disabilities Education Act (IDEA) and Elementary and Secondary Education Act (ESEA). The success of the SSIP requires systematic improvement across the Utah State Office of Education (USOE) and LEAs to leverage existing strengths while simultaneously closing system gaps. For this to occur, the USOE and LEAs need to:

- Increase capacity to implement the SSIP,
- Increase utilization of evidence-based practices,
- Improve infrastructure and coordination for delivering effective professional development (PD) and technical assistance (TA),
- Increase the use of effective dissemination strategies,
- Increase meaningful engagement of state and local stakeholders around SSIP efforts,
- Increase capacity to effectively utilize available TA resources, and
- Increase capacity to implement general supervision systems that support effective implementation of the IDEA and ESEA.

These combined improvement efforts, chronicled in the SSIP, will lead to improved educational outcomes for all students in the area of mathematics proficiency, which in turn will also improve state results in graduation, dropout, and post-school outcomes.
Executive Summary

Utah’s 2013–2014 SAGE tests show 42.2% of students without disabilities in grades three through eight and ten were proficient in mathematics, but just 12.9% of students with disabilities were proficient: a 29.3% achievement gap.

To address this achievement gap, the Utah State Office of Education (USOE) brought together a variety of education and community stakeholders to create the FFY 2013 State Systemic Improvement Plan (SSIP) Phase I. USOE held multiple in-person and online meetings with these groups to review and analyze state and local education agency (LEA) data as well as the USOE infrastructure, and determine the area of greatest need for immediate improvement for students with disabilities outcomes. Part of the review process identified the need to recruit and ensure the involvement of general education teachers (at the USOE and in LEAs) and members of the business community, groups who have historically had little role in providing input regarding students with disabilities, despite the fact that virtually all Utah’s students with disabilities access the general education classroom and local businesses.

Stakeholders reached consensus on Utah’s State-identified Measurable Result (SiMR). The goal is to increase statewide proficiency by 11.11% for students with Speech Language Impairments (SLI) or Specific Learning Disabilities (SLD) in grades six through eight on SAGE mathematics over a five-year period. The SiMR-specific language was selected after a review of Utah mathematics data over the last five years on statewide assessments, in which proficiency trends were obvious. In order to improve achievement in mathematics, stakeholders identified three primary areas for USOE and LEAs to focus their efforts:

1. Administrator, teacher, parent, and student attitudes and behavior (resulting in some IEP team decisions that limit grade level core mathematics instruction);
2. Teacher understanding of mathematics standards and effective instruction; and
3. An educational system that decreases general education instructional support and interventions in the secondary settings, during a time when the mathematics core standards become more rigorous and abstract (i.e., Multi-Tiered System of Supports (MTSS)).
Across the three root causes identified by Utah stakeholders, there are common themes which, when aligned, addressed, and supported through Utah’s selected improvement strategies, will result in correcting the identified root causes and ensure achievement of Utah’s SiMR. Those themes include:

a) Creating a learning environment that is supportive of leadership, partnerships, and collaboration to meet changing national, state, and local requirements;

b) Basing IEP team decisions on individualized student needs with the provision of special education and related services to support achievement in the Utah Core Standards in the Least Restrictive Environment (LRE);

c) Providing both preservice and inservice professional learning to ensure all Utah teachers possess adequate Utah Core Standards content and pedagogy skills to meet the needs of all students;

d) Engaging all school personnel to support educators, students, and families during the transition;

e) Grounding educational and instructional decisions in data and use of evidence-based instructional practices; and

f) Funding at the federal, state, and local levels to sustain effective practices.
The impact of the coherent improvement strategies, based upon the root causes and common themes, will result in three vital changes leading to increased student proficiency.

1. Administrators, teachers, parents, and students will see the need to expect students with disabilities to master mathematics content (resulting in IEP team decisions that require and scaffold grade-appropriate Core mathematics instruction);
2. General education and special education teachers will understand mathematics standards and effective instruction will improve; and
3. The state and local educational agencies will increase general education instructional support and interventions in the secondary settings, to scaffold mathematics Core standards as they become more rigorous and abstract.

In addition to the SSIP-specific improvement strategies, Utah has many infrastructure strengths to further support these improvement efforts, especially regarding professional learning, accountability and monitoring, data availability and usage, and a statewide MTSS. Utah is participating in a variety of state-level initiatives that will be incorporated and leveraged within this SSIP, especially regarding existing improvement efforts included in the Utah Elementary and Secondary Education Act (ESEA) Flexibility Waiver, the Utah Excellence (Equity) Plan, the
Collaboration for Effective Educator Development, Accountability, and Reform (CEEDAR) Center Intensive Technical Assistance, and Governor Herbert’s PACE (Prepare young learners, Access for all students, Complete certificates and degrees, Economic success) initiative. These strengths will be used to implement, scale up, and sustain the use of evidence-based practices in Utah’s SiMR, while areas needing improvement will also be addressed to reduce the impact of the gap.

Initially, nine LEAs across Utah have been selected to participate in the SSIP. Scaling up plans will adjust each year for the next five years to ensure that the SSIP is broad enough, and effective enough, to build the capacity of all Utah LEAs to systematically increase the mathematics proficiency of students with disabilities in grades six through eight.
The Utah State Office of Education (USOE) Leadership Team (Superintendent and Associate Superintendent, Special Education Director, and Coordinators) guided the review of data, data analysis, and development of the State Systemic Improvement Plan (SSIP), which included multiple internal and external in-person and written discussions of data, infrastructure gaps, areas of strength and areas needing improvement, and possible improvement strategies. These discussions and analyses occurred with a wide selection of stakeholders at numerous state meetings and statewide conferences during the last year, including:

- Utah State Board of Education (USBE);
- Utah State Charter School Board (USCSB);
- USOE staff across departments (e.g., Special Education, Title I, Teaching and Learning, Career Technical Adult Education (CTAE), Assessment, and Data and Statistics);
- Special Education staff of other State Educational Agencies (SEAs) (California, Arizona, Wyoming, North Dakota, South Dakota, Kansas, Colorado, and New Mexico);
- Utah Special Education Advisory Panel (USEAP) (list of all USEAP membership and roles is located on the [USEAP webpage](#));
- Local Education Agency (LEA) Special Education Directors;
- Other LEA staff, as invited by the Special Education Director (e.g., Superintendent, Asst. Superintendent, Directors, and Title I Directors);
- Utah Professional Development Network (UPDN) providers and Advisory Board (includes LEA Leadership);
- Utah Parent Center (Utah's Parent Training and Information Center (PTI));
- Utah Parent Teacher Association (PTA);
- Utah Assessment Policy Advisory Committee (PAC);
- Utah Coordinating Council for People with Disabilities (CCPD) (members from Utah state agencies, including Vocational Rehabilitation, Department of Health, Division of Services for Persons with Disabilities, PTI, and Utah Schools for the Deaf and Blind);
- United States Department of Education (USDOE) Office of Special Education Programs (OSEP);
- National Center for Systemic Improvement (NCSI) state contact;
- Institutes of Higher Education (IHEs) teacher preparation, leadership, and math departments;
- Educators (general education and special education teachers);
- Parents;
- Paraeducators;
- Advocates (from Utah’s Protection and Advocacy (P&A) and the Legislative Coalition for People with Disabilities (LCPD); and
- Community members (included in various committees, Boards, and statewide conferences).
These stakeholders were included because they either pay for, provide, receive, participate in, or collaborate on Individuals with Disabilities Education Improvement Act (IDEA) services and issues, and/or provide expertise. Utah’s stakeholders are vital to the success of Utah’s State-identified Measurable Result (SiMR), and their efforts are valued and integral to the SSIP Phase I, as is their ongoing commitment to continue work towards improving outcomes for students with disabilities during subsequent phases. Based on stakeholder input and feedback, Utah identified math achievement at grades six through eight as the main focus for the SSIP and then focused the selected SiMR to address the improvement of mathematics proficiency of students with Speech Language Impairments (SLI) or Specific Learning Disabilities (SLD) in grades six through eight, based on the compelling nature of the performance gap and the suggestion of several possible factors that contributed to low performance. This was explored in detail throughout the year to reach the final SiMR selection.

Historical Stakeholder Involvement Process and Need to Broaden Representation

The USOE has historically involved a variety of stakeholders in all education-related discussions and decision-making. As part of the development of this SSIP, USOE staff engaged in an infrastructure analysis which included a review of the SEA structure and capacity across departments to roll out, implement, scale up, and sustain initiatives. In addition to the infrastructure strengths and gaps addressed later in this SSIP, this analysis identified that a broader stakeholder group, including general educators and community members, is needed. This is because many of the identified improvement needs impact the greater educational and business community, rather than only affecting students with disabilities. Also, stakeholders outside of special education have traditionally deferred providing input to individuals they perceive as having special knowledge and expertise regarding students with disabilities, rather than considering how the needs of all students align with and support the needs of students with disabilities who access Tier I Core instruction in addition to their specialized instruction (Shapiro, 2014). As described in further detail in later sections (i.e., infrastructure analysis and data analysis sections), these stakeholder behaviors unintentionally contributed to the current state of wide-spread separate and reduced expectations for students with disabilities in comparison with non-disabled peers in Utah, especially in regards to Individualized Education Program (IEP) team decisions concerning the supports needed for students with disabilities to access and progress in the grade-level state mathematics standards.

In response to this discovery, and following further discussions regarding the possible limiting impact on all students of current SEA practices, the USOE staff across multiple departments reached consensus, using an adapted Leading by Convening model (Cashman, 2014), for the need to change SEA and LEA interactions with stakeholders. In particular, the USOE recognized the need for moving beyond simply informing a limited group of stakeholders through public channels, consulting/gathering input, and reaching decisions, to creating opportunities for authentic and direct interaction, building consensus, and sharing leadership opportunities with the full range of education and community stakeholders to implement practical and sustainable solutions (Rhim, 2014). The Collaboration Continuum (Zorich, 2008) was used by USOE staff to attain consensus in setting SEA-wide targets for “collaboration” improvement for the next year, moving the USOE staff from “contact” to “coordination” by September 11, 2015.
Although these collaboration efforts, needs, and goals were determined by front-line SEA staff, they are supported by USOE Leadership and LEAs, who recognize the need for changing communication and collaboration protocols at all levels to effectively change and sustain educational practices throughout the state.

Stakeholder Consensus on Contributing Factors to Current Student Outcomes

Stakeholders worked to acknowledge challenges, articulate the need for change, and identify explicit goals to focus educators across the state (Rhim, 2014). Specifically, stakeholders, when reviewing mathematics proficiency data as well as demographic and placement data, disaggregated at the state and local levels (i.e., gender, age/grade, race/ethnicity, English Learner (EL), socio-economic, and disability category), generally agreed that when students with disabilities are held to high expectations (Frieden, 2004) and have access to and receive effective Tier I instruction and support in the Core standards alongside their same-age peers, supported by specialized instruction and related services and other Tier II–III interventions, they can achieve high academic standards. Those same stakeholders attributed Utah’s low levels of proficiency to a variety of contributing factors and potential root causes, including:
1. **The impact of administrator, teacher, student, and parent attitudes towards mathematics instruction, difficulty, and low expectations of students with disabilities in mathematics on placement and content access.** “Much of the public’s self-evident resignation about mathematics education . . . seems rooted in the erroneous idea that success is largely a matter of inherent talent or ability, not effort” (National Mathematics Advisory Panel [NMAP], 2008, p. xx). Our stakeholder hypothesis is supported by research which describes that not only are parent involvement and teacher/administrator expectations an effective intervention in preparing students for mathematics success, they also “positively impact student attitudes towards a particular subject area” (Williams, 2011, p. 36; Hattie, 2009, pp. 69–71). “Across all home variables, parental aspiration, and expectations for children’s educational achievement has the strongest relationship with achievement (d = 0.80). . . . Parents should be educated in the language of schooling, so that the home and school can share in the expectations, and the child does not have to live in two worlds—with little understanding between the home and school. . . . It is not so much the structure of the family, but rather the beliefs and expectations of the adults in the home that contributes most to achievement” (Hattie, 2009, pp. 70–71). The mathematics beliefs of the adults in the students’ lives directly impact the student’s goals and beliefs about learning, and are “related to their mathematics performance” (NMAP, 2008, p. xx). These low expectations regarding mathematics (as part of College and Career Ready Standards) held by members of the IEP team (e.g., LEA representative, special education teacher, parent, and general education teacher) directly impact the selection of appropriate goals and services to support the alignment of specialized instruction to grade-level Core standards, frequently resulting in a modification of grade-level curriculum rather than a comprehensive plan to improve student outcomes as measured by grade-level standards. Research conducted nationwide also shows that while general education teachers are “generally more knowledgeable about higher level mathematics content (e.g., algebra) than special education teachers, they were less likely to report that they used specific instructional practices” (Maccini, 2006, p. 271).

2. **Teacher ability to understand, apply, and provide effective Tier I instruction, supported by Tier II–III interventions and specialized instruction in the Utah mathematics Core.** Although teachers must understand the content and scope of the mathematics standards, there is a “very low effect size (d = 0.12) between knowing mathematics and students’ outcomes” (Hattie, 2009, p. 113); however this statement conflicts with the NMAP 2008 report, which states “research on the relationship between teachers’ mathematical knowledge and students’ achievement confirms the importance of teachers’ content knowledge. It is self-evident that teachers cannot teach what they do not know” (p. xxi). Both sources admit to a dearth of precise research addressing the specific content and pedagogical practices that have the largest impact. A meta-analysis of research related to student achievement details the most effective interventions resulting in a substantial increase in student achievement (Hattie, 2009), and also correlates with the stakeholder input regarding changing expectations described earlier.
Table 1: Effective Evidence-Based Instructional Strategies

<table>
<thead>
<tr>
<th>Instruction/Intervention</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microteaching</td>
<td>$d = 0.90$</td>
</tr>
<tr>
<td>Teacher provided feedback data or recommendations to students</td>
<td>$d = 0.71$</td>
</tr>
<tr>
<td>Explicit teacher-led instruction or direct instruction</td>
<td>$d = 0.65$</td>
</tr>
<tr>
<td>Teachers challenging students (i.e., encouraging them to problem-solve alone or as a group)</td>
<td>$d = 0.64$</td>
</tr>
<tr>
<td>Peer-assisted learning</td>
<td>$d = 0.62$</td>
</tr>
<tr>
<td>High expectations</td>
<td>$d = 0.53$</td>
</tr>
<tr>
<td>Concrete feedback to parents</td>
<td>$d = 0.43$</td>
</tr>
</tbody>
</table>

It is evident to Utah stakeholders that teachers must have both mathematical content knowledge and knowledge/application of effective instruction and interventions to improve the mathematics progress and proficiency of all Utah students. These instructional skills and core concepts must then be intertwined, through IHE preservice programs and ongoing SEA and LEA professional learning opportunities, to ensure an educational system that comprehensively values and addresses the importance of math performance and improvement for each and every student. As the typical teacher’s impact on student achievement without effective instruction/intervention is minimal ($d = 0.15$ to $d = 0.35$), it is also evident through the research data above that an intervention or innovative instruction can increase the effects “markedly beyond this. . . . Innovation occurs when a teacher makes a deliberate action to introduce a different (not necessarily new) method of teaching, curriculum, or strategy that is different from what he or she is currently using” (Hattie, 2009, p. 251).

Students with disabilities must receive supported access to effective Tier I mathematics instruction from teachers with the knowledge and skills to address specific student gaps and needs (see Figure 4 on page 19). A large body of research supports the use of Universal Design for Learning (UDL), a set of principles for curriculum development that provide equal opportunities to learn from accessibility built into the instructional design (Center for Applied Special Technology [CAST], 2012), which provides additional Tier I support to all students (including students with disabilities) receiving core instruction. Without this access and instruction, there is no hope of significantly improving student outcomes in grade-level core standards, as students will not have been provided with the integral core instruction, and instead received specialized instruction. Rather, the outcomes will be the same as current outcomes, using the current system of instruction.
Figure 4: Using Utah Core Standards to Align Instruction within a Multi-Tiered System of Supports (MTSS)

Start with the Utah Core Standard

Tier 1
Core instruction guaranteed and provided to all students

1. Implement a standards-aligned curriculum that is evidence-based and includes components outlined in Utah’s MTSS handbook.
2. Incorporate effective teaching practices, including Universal Design for Learning (UDL); increase student engagement and participation in learning core content.
3. Incorporate classroom management strategies to promote engagement and on-task behavior.
4. Progress monitor periodically (at least three times a year) to determine effectiveness of core instruction and identify students in need of additional supports (beginning, middle, and end of year).

Tier 2
Core instruction with supplemental targeted instructional supports

1. Provide explicit pre-teaching and explicit practice of skills underlying the core content standards.
2. Provide small-group instruction with multiple opportunities to respond in multiple formats (UDL), giving explicit corrective feedback.
3. Incorporate additional small-group or individual strategies targeted to the individual need in engagement or motivation.
4. Progress monitor a minimum of 1–2 times per month using a valid, reliable tool for the targeted academic area.

Tier 3
Core instruction with targeted, intensive supports

1. Break down instruction into small steps, prioritizing foundational skills and core concepts not yet mastered.
3. Incorporate behavior strategies targeted to individual need in self-regulation, social skills, and organization.
4. Collect progress monitoring data weekly, at a level that is sensitive to change, and adjust instruction as needed.

Specially-Designed Instruction in Addition to Core Instruction Aligned with a Student’s IEP

1. Adapt as appropriate the content methodology or delivery of instruction to meet the unique needs of a child that result from the child’s disability and to ensure access of the child to the general curriculum so that the child can meet the same educational standards within the jurisdiction of the public agency that apply to all children (§300(b)(3)).
2. Determine specific skills a student has not mastered in order to make progress in and access the general curriculum.
3. Include unique instruction in the IEP that is provided to the student to allow progress toward annual goal(s).
4. Monitor progress weekly to ensure student is progressing toward goals as outlined in their IEP in addition to progress monitoring of core instruction.

Adapted from National Center on Intensive Intervention, 2015
The “six signposts towards excellence” (Hattie, 2009, pp. 238–239) support the conclusion of Utah stakeholders described above, as they describe the teacher and leader behaviors needed to improve educational outcomes, irrespective of additional resources, class size, subject matter, working conditions, and between-school differences. This fact is critical for stakeholders to understand, given that Utah’s low education funding and larger class sizes are generally prioritized for improvement, without consideration of the additional interventions that might be more effective to changing outcomes. Those “signposts” indicate that teachers are among the most powerful influences in learning and are summarized next. They need to be directive, influential, caring, and actively engaged in the passion of teaching and learning, as well as aware of what each and every student is thinking and knowing to construct meaning and meaningful experiences in light of that knowledge. Teachers also must have proficient knowledge and understanding of their content to provide meaningful and appropriate feedback such that each student moves progressively through the curriculum levels. In addition, teachers need to know the learning intentions and success criteria of their lessons, know how well they are attaining these criteria for all students, and know where to go next in light of the gap between students’ current knowledge and understanding and the success criteria of “Where are you going?,” “How are you going?,” and “Where to next?,” as well be able to move instruction from the single idea to multiple ideas, and to relate and then extend these ideas such that learners construct and reconstruct knowledge and ideas (Hattie, 2009). It is not the knowledge or ideas, but the learner’s construction of the knowledge and these ideas, which is critical. This is only possible when school leaders and teachers create school, staffroom, and classroom environments where error is welcomed as a learning opportunity, where discarding incorrect knowledge and understandings is welcomed, and where participants can feel safe to learn, re-learn, and explore knowledge and understanding (Hattie, 2009). In Utah, the system of Professional Development and Technical Assistance (PD/TA) delivery, supported by evidence and aligned with the Utah Effective Teaching Standards (USOE, 2013) and developing teacher evaluation system (which includes a student growth component), serve to focus and leverage resources on teacher behavior to impact long-term, sustainable change (Hayes & Lillenstein, 2015).

3. **Instructional and scheduling changes in secondary schools (e.g., pace, class size, concrete vs. abstract, task analysis, length of instructional periods).** After a thorough data analysis and discussions, Utah stakeholders considered the structural changes which occur between elementary and middle/intermediate schools, and considered the impact of those changes on student learning outcomes; especially as there was a clear pattern of lowered math performance for all students between grades six through eight as well as during high school years. Utah secondary schools utilize a variety of scheduling models, from single-subject period to block scheduling. To identify patterns within LEAs and across the state, the USOE provided LEAs with detailed reports using multi-year disaggregated data from Utah’s submissions to OSEP required under Section 618 of the IDEA (e.g., disability type, educational environment, and access to general education settings). After meeting with LEA staff in small groups to provide training on
the data drill process, USOE requested that LEAs review internal course enrollment patterns for students with disabilities. LEAs then conducted an internal data review to evaluate whether the reduction in student access to general education was an unintended result of scheduling. When considered as a whole, while the individual LEA analyses did identify trends in IEP team decisions by school or special education case manager, the data did not support the hypothesis that the change in student achievement was a result of scheduling constraints. Class size may impact student achievement, but only in conjunction with changes in instructional time and teacher behavior (Rice, 1999).

The change in student achievement appears to be linked to the effective use of instructional time, interventions, and support; depth of teacher content knowledge; and the alignment of instruction with Core standards regardless of setting. These issues are already addressed in the other three stakeholder contributing factor areas; therefore, this stakeholder contributing factor will not be included in the SSIP going forward, leaving Utah with three main root causes.

4. **Differing levels of tiered support at elementary and secondary settings, with a decrease in support in secondary schools, which is when mathematics concepts become more rigorous and abstract.** The system structure of instruction and student support upon moving from an elementary school to a secondary school differs drastically. A Multi-Tiered System of Supports (MTSS) instruction delivery and school improvement framework creates opportunities for differentiated instruction within three tiers of instruction (i.e., Tier I, II, and III) to address student needs through effective core instruction in Tier I, with increasingly intensive, additional, evidence-based academic and social-emotional interventions/supports provided within Tiers II–III to students who are unsuccessful after Tier I instruction (Hayes & Lillenstein, 2015). MTSS relies on ongoing progress monitoring of student data to facilitate and support instructional change in a sustainable manner.

While much research focuses on the successes of having an MTSS or Response to Intervention (RtI) school-wide intervention model to address the needs of all students, few LEAs have successfully bridged the gap between elementary and secondary schools, leaving educational leaders and teachers with many unresolved concerns and the common perception that there are few evidence-based interventions available in secondary settings. Principals in one study, while perceiving MTSS as important, stated it was difficult to put into practice in secondary schools (Sansosti, 2010). Besides considering school and systems-level support in reform efforts, teachers should consider interventions that address varying levels of student needs within the classroom and tiers. In addition to those research-based interventions discussed previously, the Utah Core Standards has varying levels of “depth of knowledge” or cognitive/rigor demands, which can be adjusted and planned for during instruction to support struggling students with grade-level content (Boston, 2009; Marzano, 2014; Brunner, 2013).
Differing tiers of instructional support also permit special educators to focus specialized instruction on the gap or skills the student requires to continue to progress and access grade-appropriate general education standards. It also permits the special educator to implement evidence-based interventions selected to address those gaps instead of trying to replicate the Tier I Core instruction. For example, research specific to students with an SLD has shown that a combined direct instruction and strategy instruction model was “an effective procedure for remediating learning disabilities” (Hattie, 2009, p. 219).

After considering stakeholders’ original four primary factors contributing to the poor mathematics achievement of students with disabilities, and then comparing those factors to the related research base, stakeholders determined that research really supported three major gaps or root causes.

Rather than these three impactful, research-based primary gaps/considerations causing “reform fatigue,” they provide an unprecedented opportunity for large scale student growth in secondary settings by allowing for the development of a “framework for coherence that supports states in connecting college and career readiness standards, MTSS, and educator effectiveness systems” (Hayes & Lillenstein, 2015, p. 1), all of which share a common goal of improving educational quality and effectiveness to increase student outcomes.

Summary of Stakeholder Consensus, Aligned with State Systems

Stakeholders originally attributed Utah’s low mathematics performance of students with disabilities in grades six through eight to four primary factors, with the contributing factors/root causes further supported by data analysis and research (and related concepts of each identified in italics below). Other factors, grouped under the relevant State Systems topic area (and considered by the stakeholders) are included in this summary, but were either not determined to have significant strength in impacting student outcomes at this time or were data findings that focused the stakeholder input process. The italicized factors, supported by research, are critical in changing the mathematics outcomes of all students in Utah, and particularly those with disabilities.
Table 2: Stakeholder Consensus Aligned with State Systems

<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Consensus on Contributing Factors Leading to Current Student Outcomes</th>
</tr>
</thead>
</table>
| Professional Development and Technical Assistance | - Low expectations of administrators, teachers, students, and parents
| | - Teacher ability to provide effective mathematics instruction |
| Data | - Decline in mathematics proficiency rates for students in grades 6-8
| | - Decline in the number of students assessed in mathematics in grades 6-8 and 10 |
| Accountability/Monitoring | - Attitudes and expectations of IEP teams and members
| | - IEP team selection of appropriate goals and services
| | - Alignment and support of specialized instruction to grade level core standards |
| Fiscal | - Low education funding |
| Governance | - Secondary school schedules
| | - MTSS availability in secondary schools |
| Quality Standards | - Teaching Standards
| | - Leadership Standards
| | - Utah Core Standards
| | - Teacher Evaluations |

As part of the ongoing plans to continue engaging stakeholders around improvement efforts, the draft SSIP report was provided electronically to over 100 stakeholders for review, prior to completion and submission. This provided the USOE with an additional opportunity to review and revise the report.

In the next section, Utah’s data analysis is described. It was conducted to determine the current performance of Utah’s students with disabilities, review contributing factors and root causes to provide information to Utah stakeholders, and develop a comprehensive SSIP to support improvement and build capacity at the local level in relation to the SiMR area.

Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA Appreciation for Assistance in Phase I

Stakeholder participation and authentic conversation focused on a common problem, coupled with the technical assistance provided by OSEP, staff from Mountain Plains Regional Resource Center (MPRRC) and the Technical Assistance for Excellence in Special Education (TAESE), and Utah’s state contact from the NCSI, has resulted in an honest dialogue of needed improvements, which assisted Utah in the creation of an effective, scalable improvement plan that will result in improved outcomes over the next five years. Utah plans to continue convening a wide range of stakeholders for the purpose of ongoing review and roll-out of coherent improvement strategies to ensure ongoing commitment to improving student outcomes that persists beyond personnel changes and funding streams.
Data Analysis (Broad and In-Depth) at State and LEA Levels

Stakeholder Involvement and Engagement in Data Analysis

A broad quantitative and qualitative analysis (e.g., State Performance Plan/Annual Performance Report [SPP/APR], 618/EdFacts, fiscal, monitoring and dispute resolution, stakeholder input, PD/TA, and general education assessment data) of Utah data occurred over the last year with a variety of stakeholders in an effort to select the SiMR and identify the root causes contributing to low performance. LEA level data were also analyzed in conjunction with LEA staff (as part of an in-depth analysis at the LEA, school, and classroom levels) to identify potential patterns of strengths and areas of concern (e.g., course scheduling, content/depths of knowledge, and IEP team Least Restrictive Environment [LRE] placement decisions) impacting the area identified as needing improvement and the potential Utah SiMR, especially those data that suggest potential root causes and target LEAs/schools for improvement. These in-depth data analyses are discussed in more detail in the SiMR section of this SSIP. The table below depicts the stakeholders involved in the data analysis process throughout the development of Phase I of the SSIP; those directly involved in data analysis are italicized.

Table 3: Stakeholder Involvement throughout SSIP Development, Phase I

<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>April-May 2014</td>
<td>• State infrastructure analysis (RRC TA Document)</td>
<td>• In-person meetings</td>
<td>• USOE Leadership</td>
<td>• MPRRC</td>
</tr>
<tr>
<td></td>
<td>• State 618/EdFacts, SPP/ APR, and accountability data analysis</td>
<td>• Webinars</td>
<td>• USOE Staff</td>
<td>• Other SEA Staff</td>
</tr>
<tr>
<td></td>
<td>• Identifying draft SiMR</td>
<td>• Phone calls</td>
<td></td>
<td>• TAESE</td>
</tr>
<tr>
<td></td>
<td>(Broad)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June-August 2014</td>
<td>• Summary of state 618/EdFacts and SPP/APR Analysis</td>
<td>• In-person meetings</td>
<td>• USOE Leadership</td>
<td>• OSEP</td>
</tr>
<tr>
<td></td>
<td>• National 618/EdFacts and SPP/APR Analysis</td>
<td>• Webinars</td>
<td>• USOE Staff</td>
<td>• P&A</td>
</tr>
<tr>
<td></td>
<td>• State infrastructure analysis (RRC TA Document)</td>
<td>• Phone calls</td>
<td></td>
<td>• PTI</td>
</tr>
<tr>
<td></td>
<td>• Stakeholder input</td>
<td>• Emailed information and</td>
<td></td>
<td>Statewide Law Conference</td>
</tr>
<tr>
<td></td>
<td>(Broad and In-depth)</td>
<td>presentations</td>
<td></td>
<td>(combination of general</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>educators, special</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>educators, parents,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>advocates, and administrators)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TAESE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• USEAP</td>
</tr>
<tr>
<td>September-October 2014</td>
<td>• Summary of state 618/EdFacts and SPP/APR Analysis</td>
<td>• In-person meetings</td>
<td>• USBE</td>
<td>• CCPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• USCSB</td>
<td></td>
<td>• Community Members</td>
</tr>
<tr>
<td>Date</td>
<td>Data Identified, Selected, and Analyzed</td>
<td>Type of Involvement</td>
<td>Internal Stakeholders</td>
<td>External Stakeholders</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| (Broad and In-depth) | • LEA 618 data and SPP/APR Analysis
• Summary of LEA 618 data and SPP/APR analysis trends
• Statewide assessment data analysis | • Webinars
• Phone calls
• Emailed information and presentations | • USOE Staff | • General Ed Teachers
• IHEs
• LCPD
• LEA Sped Directors
• OSEP
• Other LEA Staff
• Other SEA Staff
• P&A
• Paraeducators
• PTA
• PAC
• PTI
• School Administrators
• Special Education Teachers
• Title I Directors
• UPDN Advisory Board
• USEAP |
| November-December 2014 | • Summary of data analysis listed above
• Math proficiency data analysis (i.e., subgroup of statewide assessment data)
• Accountability data (e.g., ESEA Waiver, School Grades, PACE Report)
• Stakeholder input
• Refining draft SiMR and Theory of Action | • In-person meetings
• Webinars
• Phone calls
• Emailed information and presentations | USOE Staff | CCPD
• IHEs
• LEA Sped Directors
• LEA staff
• P&A
• PTI
• UPDN
• USCSB |
| (Broad and In-depth) | | | | |
| January-April 2015 | • Summary of data analysis listed above
• Stakeholder input
• LEA school- and teacher-level placement/LRE data analysis | • In-person meetings and conferences
• Webinars
• Phone calls
• Emailed information | USBE
• USCSB | CCPD
• Community Members
• General Ed Teachers
• IHEs
• LCPD
• LEA Sped Directors
• NCSI
• OSEP |
<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
</table>
| | • Comparison of math proficiency of students with disabilities to general education peers analysis (i.e., gen ed assessment data)
• LEA-specific data analysis on SiMR area to select LEAs and schools for SSIP
• Analysis of schools selected under ESEA Flexibility Waiver
• Analysis of quality standards, governance, and PD/TA data
• Criticality Index and personnel
• Analysis of research on effective interventions for mathematics
• Finalize Theory of Action
• Broad Coherent Improvement Strategy selection
• Refining and finalizing SiMR and targets and presentations | | | • Other LEA staff
• Other SEA staff
• P&A
• Paraeducators
• PTA
• PAC
• PTI
• School Administrators
• Special Education Teachers
• TAESE
• UPDN Advisory Board
• USEAP |

Stakeholders quickly reached consensus that Utah’s SiMR should address the low performance of students with disabilities in the area of mathematics proficiency in grades six through eight.

These broad and in-depth state data, when considered along with stakeholder feedback described earlier, LEA in-depth data review results, and Utah LRE/placement data (which show a decline in the number of students with disabilities spending 80% or more of their school day in the general education classroom starting in grades five through six and continuing through high school), suggest that Utah stakeholders accurately attribute Utah’s low levels of proficiency to:
1. Administrator, teacher, parent, and student attitudes and behavior (resulting in some IEP team decisions that limit grade level core mathematics instruction);
2. Teacher understanding of mathematics standards and effective instruction; and
3. An educational system that decreases general education instructional support and interventions in the secondary settings, during a time when the mathematics core standards become more rigorous and abstract.

The issue brought up by the data analysis and stakeholders regarding placement decision trends of IEP teams in secondary settings was considered to determine if it resulted in a compliance-based root cause or barrier to improvement. Upon further investigation and discussion, it was determined to impact Utah’s math performance of students with disabilities, as were other compliance items regarding IEP team decisions. Details are included under Monitoring and Dispute Resolution further in this report (p. 41).

Statewide Assessment Data Analysis

In addition to the year-long (broad and in-depth) data review analysis conducted in Utah, the 2013–2014 school year was the baseline administration of the new statewide assessment (i.e., Student Assessment of Growth and Excellence [SAGE]) in English/Language Arts, Mathematics, and Science. The SAGE results demonstrated a low level of proficiency for all students (including students with disabilities) in mathematics, which confirmed the trend identified previously by stakeholders using data from previous state assessments. The identified achievement gap in proficiency rates between students with and without disabilities is 29.3%. Efforts focused on closing this gap will lead to increased achievement outcomes for students with disabilities.

Table 4: Utah SAGE Results in Mathematics 2013–2014, Grades 3-8 and 10

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Percent Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>All students</td>
<td>38.8%</td>
</tr>
<tr>
<td>Students without Disabilities</td>
<td>42.2%</td>
</tr>
<tr>
<td>Students with Disabilities</td>
<td>12.9%</td>
</tr>
</tbody>
</table>
Table 5: Utah SAGE Results for Students with Disabilities in Mathematics 2013–2014 by Grade

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Percent Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>22.3%</td>
</tr>
<tr>
<td>4</td>
<td>21.4%</td>
</tr>
<tr>
<td>5</td>
<td>16.1%</td>
</tr>
<tr>
<td>6</td>
<td>9.2%</td>
</tr>
<tr>
<td>7</td>
<td>9.5%</td>
</tr>
<tr>
<td>8</td>
<td>6.6%</td>
</tr>
<tr>
<td>10</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Statewide assessment data also suggest that fewer students with disabilities are assessed in grade level mathematics than in grade level English/Language Arts (ELA) in secondary grades, reinforcing the selection of grades six through eight as the appropriate target for the SiMR. This will be addressed further under Data Quality on p. 41.

Figure 5: Multi-Year Review of Students with Disabilities Taking ELA and Math Statewide Assessments
When reviewing results for the subtests of the SAGE assessment for each content area, there is an aligned need across all subgroups. As demonstrated below, a more focused data analysis identified that all students are achieving limited proficiency rates in grades six through eight. There are no individual subtests that are particularly more or less challenging for students in this age group. The fact that all students are experiencing a decrease in mathematics proficiency in grades six through eight allows for the alignment and leveraging of existing initiatives across a broad stakeholder population. The same data were reviewed in the same manner by LEAs to allow for consideration following the analysis of the state infrastructure and during development of Utah’s Theory of Action and selection of Broad Coherent Improvement Strategies.
Based on consideration of these data, Utah identified math achievement on the SAGE assessments as an area that required further focused data analysis and consideration for the SiMR.

SPP/APR and 618 Data Analysis

In the FFY 2013, Utah showed progress and met goals for the majority of SPP/APR indicators, including those measuring compliance and student outcomes. A summary of the FFY 2013 APR data, grouped by the type of change, details the progress and areas of improvement needed in Utah.

Table 6: FFY 2013 SPP/APR Summary

<table>
<thead>
<tr>
<th>Type of Change</th>
<th>SPP/APR Area</th>
<th>Indicator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>Graduation rates of students with disabilities (+4.11%)</td>
<td>1</td>
</tr>
<tr>
<td>Improvement</td>
<td>LRE rates for students with disabilities ages 6-21 (range of +0.09% to +0.46%)</td>
<td>5</td>
</tr>
<tr>
<td>Improvement</td>
<td>Preschool outcomes (range of +2.01% to +5.31%)</td>
<td>7</td>
</tr>
<tr>
<td>Improvement</td>
<td>Initial evaluation timelines (+0.77%)</td>
<td>11</td>
</tr>
<tr>
<td>Improvement</td>
<td>Part C to Part B transition timelines (+0.39%)</td>
<td>12</td>
</tr>
<tr>
<td>Improvement</td>
<td>School to post-school transition plans (+10.4%)</td>
<td>13</td>
</tr>
<tr>
<td>Improvement</td>
<td>Students with disabilities enrolled in higher education, enrolled in some other post-secondary education or training program, or competitively employed (range of +0.82% to +1.37%)</td>
<td>14B, 14C</td>
</tr>
<tr>
<td>Reduction</td>
<td>Dropout rates of students with disabilities (-0.81%)</td>
<td>2</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Zero percent disproportionality by race/ethnicity, disability category, or discipline</td>
<td>4, 9, and 10</td>
</tr>
<tr>
<td>Type of Change</td>
<td>SPP/APR Area</td>
<td>Indicator(s)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Slippage</td>
<td>LRE rates for students with disabilities ages 3-5 (range of -5.75% to -7.56%)</td>
<td>6</td>
</tr>
<tr>
<td>Slippage</td>
<td>Parents reporting that schools facilitated their involvement (-3.77%)</td>
<td>8</td>
</tr>
<tr>
<td>Slippage</td>
<td>Students with disabilities enrolled in higher education (-3.1%)</td>
<td>14A</td>
</tr>
<tr>
<td>Baseline</td>
<td>Statewide assessment data</td>
<td>3A, 3B, 3C</td>
</tr>
</tbody>
</table>

Using 618 data, Utah has approximately 76,000 students with disabilities ages 3–21 (approximately 71,000 ages 6–21) served with an IEP. Of those ages 6–21, approximately 46% are students with an SLD, 22% have an SLI, and 10% have an Other Health Impairment (OHI). Using disability category data alone, up to 86% of Utah students with disabilities have mild/moderate disabilities. However, discussions with stakeholders seem to reflect a focus on the generalized perceived ability level of all students with disabilities, with stakeholders basing decisions upon a potential impact on a small number of students with significant disabilities. It is not the SEA’s intention to marginalize the expectations for any student with disabilities, but to instead address the needs of all students with disabilities while ensuring policy and practice decisions meet the needs of all students.

When looking at Utah students with disabilities ages 6–21, data analysis revealed that 50% are students from low income settings and 9.4% are English Learners (ELs). The majority (65%) are male, 76.5% are white, 16.5% are Hispanic, and less than 2% (each) are other race/ethnicity categories. While these data are informative, further focused data analysis reveals more alarming trends, in that as students with disabilities grow older and move into secondary settings, IEP teams are deciding on a need for more restrictive settings with less access to non-disabled peers, and possibly the general education Core curriculum. And, while students graduating or leaving with a certificate of completion are increasingly engaging in competitive employment and decreasing rates of under-engagement, Utah is experiencing decreasing rates of participation in post-secondary education. The next chart shows post-school outcomes for FFY 2013 and depicts the difference in outcomes based on the method that the student left school (i.e., with a regular diploma, certificate of completion (CT), reaching of maximum age (AO), or dropping out (DO)). Review of this data shows that students with a diploma show increased rates of enrollment in higher education or being competitively employed than all other categories. While only one year of data is included in this report, reviews of data going back multiple years depict similar trends.
For those students with disabilities going on to post-secondary education in Utah IHEs, there has been an overall decrease in the percent of students taking entry-level courses in mathematics (Math 1010) and a subsequent increase in the number of students enrolled in remediation courses. The Utah State Legislature passed a resolution during the 2015 session to increase the State focus on mathematics as an essential knowledge base for college, career, and independent living. As a part of this resolution, the Legislature noted:

More than 50% of Utah students entering the higher education system require mathematics remediation and developmental courses at significant cost to both students and taxpayers; WHEREAS, students entering college who require remediation or developmental courses are significantly less likely to graduate; WHEREAS, requiring high school students to demonstrate mathematics proficiency or complete four years of mathematics during high school is one of the most influential policy levers available to strengthen academic preparation and increase college success. (Utah House Resolution 5, 2015)

The two charts below summarize the 618 data determined to be pivotal by Utah stakeholders in determining Utah’s SiMR in the area of mathematics proficiency. The first chart summarizes the amount of specialized instruction determined as needed by the IEP team to allow the student to access and progress in grade-level Core standards. Services are grouped by grade and three subcategories of time (i.e., 1–59 minutes of specialized instruction and related services per day, between 60–179 minutes of specialized instruction and related services per day, and students receiving 180 minutes or more of specialized instruction and related services per day). These service minutes are irrespective of the location where services are provided. The next chart, using the same population of students with disabilities, displays students’ with disabilities access to general education (as determined by IEP teams) by grade, grouped by those spending 80–100% of the school day with general education peers, those spending between 40–79% of
the school day with general education peers, and those spending less than 40% of the school day with general education peers. When considered together, both charts depict an interesting change in the amount of special education and related services, as well as in access to the general education classroom; both decisions made by IEP teams. In grades six through eight, students spend an increasingly smaller percentage of the day in general education classrooms, while at the same time these students are receiving a growing amount of special education and related services. IEP teams, in making decisions based on the individualized student needs, may be overlooking the long-term impact of removing students with disabilities from the general education standards, in their desire to address performance gaps.

Figure 8: Students with Disabilities—Special Education Service Time

![Special Education Service Time Chart](image)

Figure 9: Students with Disabilities—Percent of Day in General Education Settings

![General Education Participation Chart](image)
Fiscal Data Analysis

In fiscal year 2015, the budget appropriated by the Utah State Legislature to support public education totaled $3.99 billion, with $2.55 billion coming from the state General and Education funds. Appropriations for public education represent 28% of the total state budget and 48% of state tax revenues from the General and Education funds. Appropriations for public education support the operation and maintenance of 148 LEAs in the 2015–2016 school year, which include 41 school districts, the Utah Schools for the Deaf and the Blind, and 106 charter schools. The number of charter schools continues to increase annually.

In Utah, approximately 70% of special education and related service funding is provided by the state legislature, using education funds restricted to the use for students with disabilities, with 28% provided federally through IDEA, and 2% provided through local sources. The dollar amount of state funding for education has been slowly increasing, and LEAs received higher funding during the 2015 legislative session, but the pace of funding increases has not grown at the same pace as the rising costs associated with the health care and retirement benefits that are typically offered as enticement to teaching as a career.

Figure 10: State Budget FY 2015

Utah conducts an annual survey (i.e., Criticality Index) with LEAs to determine the need for various teaching and related server positions. For the past several years, special education teachers, speech language pathologists (SLPs), and secondary mathematics teachers have been identified within the top ten licensure areas as moderate to critical need. Students enrolled in these areas in personnel preparation programs are eligible for financial support through the T. H. Bell Teaching Incentive Loan Program. Students are also eligible for loan forgiveness programs through the USDOE. Utah provides Extended Year for Special Educator Stipends for
special education teachers and SLPs to work up to 10 additional days per year on the paperwork and evaluation responsibilities required under IDEA, although current funding supports up to four days. In spite of all these financial incentives, out of 360 special education teachers currently assigned as a teacher of record of secondary mathematics to students with disabilities, only 202 (56%) currently hold the required Mathematics-Special Education endorsement. For educators as a whole in Utah, typically over 90% of educators are considered fully qualified for their assignment.

At the same time, Utah has experienced a per-pupil decrease in federal IDEA funds provided to supplement special education and related services. Utah has larger than national average class sizes, resulting from the low education funding and LEA prioritization of existing funds within the system. Some Utah secondary mathematics teachers are eligible for an annual $4,100 salary supplement funded by the Utah legislature, in an effort to support LEAs in the recruitment of teachers who are able to provide mathematics instruction in secondary schools.

Figure 11: WPU Value History

![WPU Value History Graph](image)

These fiscal data, when considered and discussed by stakeholders in conjunction with student outcomes, have not substantiated an impact/root cause relationship between fiscal support and proficiency rates. This further supports Hattie’s conclusion that teacher and leader behaviors, which are under the control of the individuals, have more impact on student outcomes (Hattie, 2009). However, *this is not to say that increased funding and smaller class sizes would have no improved outcomes on students, but to clarify that those additional resources alone, without changes in teacher and leader behaviors, will not solve the current concerns.*
PD/TA Data Analysis

In the spring of 2014, the USOE released a request for proposals (RFP) for a new statewide PD/TA system to address the professional learning needs of school personnel, parents, and agencies working with students with disabilities ages 3–21. The RFP reflected the intention that the PD/TA system would have the primary purpose of serving as an intervention to improve the state’s performance data for students with disabilities, as well as address any statewide professional development needs and other supports deemed necessary by the USOE and a newly created PD/TA Advisory Board, with broad stakeholder representation of parents, superintendents, special education directors, and IHEs. The need for the exploration and eventual full implementation of a new USOE PD/TA system was created over time as state and federal policy related to purchasing and accountability systems, as well as state personnel development issues and evidence-based practices, have evolved. The selected awardee, the Utah Professional Development Network (UPDN), addressed the following needs (and replaced the Utah Personnel Development Center, which has been the PD/TA provider for the last 30 years):

- Created a unified, integrated PD/TA system, with resources allocated to support priority indicators in need of improvement as identified through analysis of state data.
- Providers within the PD/TA system constitute a single team, operating within a coordinated system, regardless of assignment and employer (i.e., USOE staff, State Personnel Development Grant (SPDG) staff, PD/TA project staff).
- The system is responsive and flexible to the needs of stakeholders and the state, based on state- and LEA-collected data.
- A tiered approach to the provision of PD/TA is used, which acknowledges the need for varying levels of support among the variety of stakeholders, including urban and rural school districts and charter schools, to be supported by the system.
- The system is as proactive as possible and provides support to stakeholders before problems reach the level where intense support is needed, but PD/TA will be available in critical times of need, as well.
- The PD/TA system is built on the principles of effective implementation that are embedded in research-based knowledge, including (a) using effective knowledge translation strategies to encourage lasting systems change through scaling up; (b) incorporating strategies to ensure systematic adoption, installation, initial and full implementation, innovation, and sustainability of interventions focused on improving indicators; and (c) measuring both fidelity of implementation of these interventions at every stage, and the student and educator outcomes envisioned for the intervention.
- Professional development and technical assistance includes embedded concepts regarding:
 - The importance of a rigorous curriculum and high expectations for students with disabilities with alignment to Utah Core Standards and Utah Alternate Standards, the Essential Elements (EES);
 - The need for tracking of student progress and growth through both formative and summative assessments;
The need to collect and report accurate student data for accountability purposes;

- The components of research-based effective instruction (including responding to a lack of student progress); and

- The purpose of IDEA and specialized instruction, including the utilization of Standards-Based (SB) IEP components.

- The specific components of the PD/TA system provide a pragmatic approach to establishing a system that (a) utilizes data to identify stakeholder need for support at differing levels of intensity, (b) creates an accountable delivery system of PD/TA support at each level of intensity, and (c) ensures sufficient intensity of support to result in implementation of evidence-based interventions matched to stakeholder needs in order to achieve the overarching goals of the PD/TA system. The overarching goals are to (1) improve state data regarding student with disability outcomes as a whole, and (2) have fewer stakeholders, including LEAs, in need of higher-intensity supports.

- At the Universal level, supports focused on providing organized and useful access and beginning knowledge/information would be available to all stakeholders, but would be grounded in the expectation that stakeholders with few or only modest needs for improvement would be able to utilize the resources available without active or extensive assistance from PD/TA providers. At the Targeted level, supports focused on providing access to targeted group assistance would be available for stakeholders with greater needs which could be met through group interventions. At the Intensive level, supports focused on providing access to intensive, individualized implementation would be reserved for LEAs with the greatest needs.

A review of PD/TA requests received from LEAs during the 2014–2015 school year suggests that LEAs, rather than addressing PD/TA needs as part of a systematic improvement plan designed to build capacity within the LEA and specifically address student outcomes, continued to request and access PD/TA based on immediate needs or needs that may need to be addressed as part of Tier I positive behavior supports. Of the more than 100 requests for PD/TA received during this time frame, less than five requests address effective instruction within a core content area or SPP/APR areas, while more than 40 requests address student behavioral needs.

Quality Standards and Governance Data Analysis

A review of SEA quality standards and governance systems was conducted, analyzed, and discussed. The results are included in detail and discussion in the Infrastructure Analysis portion of this SSIP on p. 51 and summarized in Table 7 on p. 47 for consistency.

Accountability, Monitoring, and Dispute Resolution Data Analyses

Accountability

Utah has a USDOE-approved Elementary and Secondary Education Act (ESEA) Flexibility Waiver, which ends this 2014–2015 school year. The USBE voted to apply for a one-year renewal in March 2015. The Utah Comprehensive Accountability System (UCAS) approved in the ESEA Flexibility Waiver is centered on two components: achievement and growth, with readiness accounting for half of the achievement scores in high schools. The structure of the proposed
system and points allocated to each component are depicted in separate figures—one for elementary and middle schools and one for high schools.

Figure 12: Structure of Elementary and Middle School Accountability Model

![Structure of Elementary and Middle School Accountability Model](image1)

Figure 13: Structure of High School Accountability Model

![Structure of High School Accountability Model](image2)

Achievement

Achievement is measured as the percent of students scoring at or above proficient for all English/Language Arts, mathematics, and science assessments and the direct writing assessment (DWA) in applicable grades. In grades with no DWA, each content area is weighted equally (one third). When the DWA is included, it counts for one half of the weight of one
assessed content area. The weighted percent proficient is scaled such that a maximum of 300 points is attainable.

Readiness

Readiness accounts for 150 of the 300 points for high schools in the achievement component. It is calculated by multiplying the graduation rate with completers by 150 (e.g. .70 x 150 = 105). The inclusion of completers allows a broader measurement of high school success for all student groups. This calculation ensures that students with disabilities who leave public education with a certification of completion or reaching maximum age (as determined appropriate by each student’s IEP team) rather than graduating with a regular high school diploma, also receive recognition for that accomplishment.

Growth

The Student Growth Percentile (SGP) method provides the basis for measuring academic growth in the model. Student growth is determined by comparing each student’s progress with that of other students in the state with the same prior achievement pattern. SGPs provide a familiar basis to interpret performance, the percentile, which indicates the probability of an outcome given the student’s starting point, and can be used to gauge whether the student’s growth was atypically high or low.

To evaluate growth for a school, the median of all individual SGPs is calculated and evaluated against a rubric. This rubric provides higher points for a rate of growth that is associated with attaining or maintaining proficiency. This process is completed twice— once for all students at the school and once for only those students who are non-proficient. By so doing, the schools have an extra incentive to promote achievement of the lowest performing students.

The overall outcome for growth is a whole-school score with a maximum value of 200 and a non-proficient student score with a maximum value of 100, for a total of 300 growth points available.

Outcomes

Performance in achievement and growth are summed to produce an overall composite score and a percentile ranking. The target score established for schools will be 480 points for elementary and middle schools and 470 for high schools. Data analyses reveal this is a very ambitious target, yet achievable for the highest performing schools in Utah. Elementary and middle schools achieving the benchmark of 480 are at approximately the 75th percentile statewide. The target is even more rigorous for high schools where a composite score of 470 is at the 85th percentile statewide. Although these targets are clearly ambitious, the fact that 25% of elementary and middle schools and 15% of high schools have achieved this superior level of performance indicates that they are attainable. The USOE Assessment Policy Advisory Committee (PAC) carefully studied and discussed the impact data generated by the proposed 480 and 470 cuts. The PAC was guided by the principle that expectations informed by observed performance provide a basis for “ambitious but achievable” goals (see, for example, Linn, 2003). The target established by the committee was considered to be challenging to schools but
reasonable and attainable. The USOE is continuing to review draft impact data to assure the target is both ambitious and achievable for all schools.

Annual Measurable Objectives (AMOs)
Utah’s ESEA waiver states the long-term goal is for all Utah schools to reach the established target benchmark. AMOs are set based on reducing the gap between a school’s current score and the target score by half in six years (by 2017). The baseline score is computed separately for each school, to allow each school a fair and reasonable opportunity for improvement based on their individual starting point while setting a rigorous standard for all schools.

Subgroup Accountability
Subgroup accountability is a challenging task in Utah due to the large number of schools and LEAs with subgroups of fewer than 30 students. An accountability framework which identifies typical subgroups with a minimum n size of 30, such as Utah’s current federal system, would exclude significant numbers of both students and schools. This typical approach does not work in an atypical state and fails to hold all Utah schools to a sufficiently high standard for students with the highest needs. Utah previously addressed this challenge with subgroup classifications in the Utah Performance Assessment System for Students (U-PASS) state accountability system. This system determined accountability based on a super subgroup, whose membership includes any student who belongs to one of the No Child Left Behind (NCLB) required subgroups. This aggregation has proven to be an effective method of working with the small subgroup n sizes in Utah to ensure the maximum number of students are included in accountability calculations. Importantly, however, the reporting provides achievement data for each individual subgroup. This method of calculation and reporting was approved by Utah policy makers including those representing each of the subgroups.

School Grading and PACE Report
In addition to federal accountability measures under ESEA, starting in 2011, Utah state law (53A-1-1101) and USBE Rule R277-497 requires that each public school in Utah receive a school grade consisting of an A, B, C, D, or F. Since inception, school grading requirements have been revised by the Utah legislature each year, and generally reflect the achievement of students enrolled in the school on statewide assessments (including proficiency and growth/progress). High schools have additional considerations impacting their School Grades, as graduation rates and College and Career Readiness indicators (i.e., ACT® scores) are included. These requirements are included and described above in Utah’s ESEA Flexibility Waiver, but also result in each school receiving a letter grade.

“On PACE 66% by 2020,” a state initiative of Utah’s Governor Herbert, is designed to increase educational performance of Utah’s students to reach the 66% benchmark while envisioning that at least two-thirds of Utahns ages 20–64 will have earned a postsecondary degree or certificate. PACE is an acronym that represents the coordinated current bulleted and bolded initiatives designed to achieve the following by 2020, followed by the associated metrics:
• **Prepare young learners:** 90% proficiency in third, sixth, and eighth grade reading; 90% proficiency in third, sixth, and eighth grade math; and 100% of high school seniors taking the ACT test.

• **Access for all students:** a 90% high school graduation rate; 80% postsecondary enrollment rate; and elimination of waiting lists in required courses.

• **Complete certificates and degrees:** 13% of the workforce will have board-approved certificates; 14% of the workforce will have associates degrees; 28% of the workforce will have bachelor’s degrees; and 11% of the workforce will have graduate degrees.

• **Economic alignment:** 90% of graduates will be employed in their fields of study.

In addition to receiving a school report card with a letter grade, each school receives a PACE report describing their performance on the associated PACE metrics.

Monitoring and Dispute Resolution

Data analysis included a review of Utah Program Improvement Planning System (UPIPS) monitoring data, which includes both quantitative and qualitative compliance and student outcome data collected from desk audits, dispute resolution processes, on site file and documentation reviews, and interviews with parents, students, and school staff. Utah LEAs typically display high rates of compliance with IDEA and USBE Special Education Rules; however, upon determination of any noncompliance, LEAs must provide evidence of correction at both the student level, as well as the systems level, in compliance with OSEP Memo 09-02. In FFY 2013, 100% of Utah LEAs have corrected findings of noncompliance as soon as possible, and no later than one year. Prior to correction, UPIPS monitoring data reflected trends which present a potential barrier to improved student outcomes in mathematics:

- General education teachers attended IEP meetings in 94% of the files reviewed; however, interviews with parents, students, and staff reflect that general education teachers may not stay for the entire meeting or contribute expertise on the grade-level Core standards or how the student could be involved and supported within those grade-level standards.
- IEPs address how the student’s disability affects their progress and involvement in the general curriculum in 76.5% of files reviewed.
- IEPs address how students will participate in statewide assessments in 89.3% of the files reviewed; however, comparison of IEP decisions and state assessment reports on participation of students with disabilities do not align.
- General education teachers, when interviewed, did not report strategies to assist students who are experiencing academic or behavioral difficulties.
- Dispute resolution data reflect low numbers of disputes compared to the national average, yet show a small trend of stakeholder concerns regarding IEP team decisions regarding placement/LRE, services and goal selection and provision, and behavior supports.

Planned for over the last five years, and fully implemented during the 2014–2015 school year, the USOE changed from monitoring only compliance to providing consistent leadership and targeted support to LEAs around state priority areas for improvement with student outcomes.
(i.e., preschool, school to post-school transition, and effective instruction in mathematics and literacy). These SEA efforts further support the SSIP and align with the SiMR.

Data Quality

Accurate, relevant, and timely data can inform policy makers, stakeholders, and educators in setting goals, targeting interventions, identifying strengths, making policy, and monitoring progress. Accurate, relevant, and timely data requires that the appropriate people have access to the data they need when they need it and know how to effectively and accurately report the data. This must also be balanced by privacy concerns and proper data use.

USOE has developed a data governance structure based on proven data governance practices and educational data needs. The USOE data governance structure centers on the idea that data is the responsibility of all USOE sections and that data-supported decision making is the goal of all data collection, storage, reporting, and analysis. Data-supported decision making guides what data are collected, reported, and analyzed.

While data governance works best when all employees take an interest in data and data issues, specific individuals are assigned to guide and facilitate proper data use. Each section at USOE assigns at least one data steward to oversee how data specific to that section is defined, collected, stored, shared, and reported. Data do not exist in a vacuum, but are only properly used within context. While USOE Data and Statistics and Information Technology (IT) staff have knowledge about data, analysis, and data systems, they lack the contextual knowledge needed to make policy decisions about the collection and use of data. Good data management requires both an understanding of the data and an understanding of the program or context. Thus, data stewards function as liaisons and bridge the gap that sometimes exists between “data folks” and “program folks.” Data meetings foster collaboration among the USOE sections and between the USOE and LEAs. It is important that all data be collected once, have one source system of record, and be shared among all that are authorized and have a need for the data. Reported data should meet the standards of reliability and validity and adhere to established quality control processes. Finally, interpretation and use of reported data should be appropriate to the definitions, the collection, and educational theory surrounding the data.

Over the past several years, Utah has made considerable effort to improve the accuracy and reliability of data. USOE has implemented the Schools Interoperability Framework (SIF) in order to facilitate quality reporting of student data and transfer of information between USOE and LEAs. Data are submitted from the LEAs to USOE on a daily basis. This ensures a continual review of the data so that LEA staff can make ongoing corrections as needed. Further, USOE requires three distinct submissions which allow for a “snapshot” of enrollment at a particular time. For these three submissions, USOE staff conduct general reviews of the data and provide timely feedback to LEAs so that corrections can be made before the data are considered final. These reviews are designed to catch major problems such as the omission of large groups of students from the reporting. If necessary, USOE does have policies and procedures in place for LEAs to request the correction of previously submitted data. This review is provided by the USOE Data and Statistics section, and submissions should be reviewed by each data steward for the identification of potential program-specific errors. The USOE Special Education Section has
implemented a data steward review process, but not all sections complete a similar review for each submission.

While the USOE focus on timely and accurate data has improved data quality, there are still areas for improvement. In the process of transitioning from the Criterion Referenced Tests (CRTs) and the Utah Alternate Assessment (UAA) statewide assessment to the SAGE and Dynamic Learning Maps (DLM) assessment (Utah’s new alternate assessment in English Language Arts and Mathematics), there have been several unexpected difficulties in matching results when both sets of data may be required. These unexpected difficulties led to a request from USOE for re-submission of the 2013–2014 assessment results for all students (including students with disabilities) to EdFacts. For the purposes of identifying the SiMR, USOE is using the most current data available. Reports may not match the EdFacts reports, as those are still in the resubmission process.

This resubmission is not related to a failure on the part of USOE staff to implement data quality policies, procedures, and practices, but is the result of transitioning to an entirely different approach to assessment that includes computer adaptive testing and calculations of student growth. Some business rules that fit with the prior data set did not fit with the new data set, but those differences could not be identified until after the data were organized into an EdFacts submission. The resubmission is planned for April 2015.

Need for Additional Data Analysis, Use, and PD/TA

During the data review process used in the development of Utah’s SSIP, the State identified some additional data needs. First, the USOE has not been using existing data to the fullest extent possible. Data are available for USOE analysis on a variety of teacher, student, school, and LEA variables. With the state longitudinal data system in place, data are available for analysis of college and career results for previously enrolled students. Further, Utah has cooperative agreements in place with other state agencies and programs that serve students. In spite of the wealth of data available, the primary use of data has been accountability reporting. In general, the USOE has not used the available data to identify statewide priorities, to design statewide instructional initiatives, or to prioritize the use of limited resources outside of individual sections. Plans are underway, as part of the cross-departmental collaborative work at the USOE, to increase and share data usage by September 11, 2015.

Second, USOE and LEA staff are not sufficiently trained in the interpretation and use of large-scale data. USOE has addressed this need by conducting small group data reviews at the state and the LEA level. During these data drill meetings, USOE staff and LEA staff collaboratively reviewed data from multiple sources, compared results to identify barriers to data quality, discussed data definitions and understanding, considered guiding questions, and identified areas for further action. These data drill meetings were held by multiple USOE sections and were available to LEAs several times during the 2014–2015 year. During 2015–2016, further activities are planned for collaborative data use within the USOE and LEAs.

Finally, ongoing data analysis and planning will be required for implementation of Phase II and Phase III of the SSIP. As Utah works to change statewide systems and improve outcomes for all students including students with disabilities, a continuous review of data will be essential to be
sure the state is on track to meet annual and long term targets. Throughout the five-year implementation of the SSIP, Utah must annually review student, teacher, school, and LEA data to evaluate the effectiveness of improvement strategies and to modify implementation as needed.

Summary of Data Analysis, Aligned with State Systems and Stakeholder Involvement and Engagement

Stakeholder input, data analysis, and research indicate that Utah’s low mathematics performance of students with disabilities in grades six through eight can be attributed to three primary factors/root causes. These primary factors and related concepts of each are identified in italics below. Other factors, grouped under the relevant State Systems topic area (and considered by the stakeholders during data analysis) are included in this summary, but were either not determined to have significant strength in impacting student outcomes at this time or were data findings that focused the stakeholder input and data analysis process. The italicized factors, supported by research, are critical in changing the mathematics outcomes of all students in Utah, and particularly those with disabilities. Utah has a significant opportunity to align and leverage several general education initiatives to improve the performance of students with disabilities, especially regarding state and federal accountability systems (i.e., ESEA Flexibility Waiver, School Grades, and the PACE Report), as improvements in the outcomes for students with disabilities in the area of mathematics proficiency, as well as in graduation and post-school outcomes, will elevate school status in grading and PACE.

Table 7: Stakeholder Involvement Throughout Data Analysis of State Systems

<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Input on Contributing Factors</th>
<th>Data Analysis</th>
</tr>
</thead>
</table>
| Professional Development and Technical Assistance | • Low expectations of administrators, teachers, students, and parents
 • Teacher ability to provide effective mathematics instruction | • New state system of PD/TA which addresses LEA capacity, tiered supports, and evidence-based PD
 • LEAs generally have not incorporated PD/TA into improvement plans designed to address Utah’s SiMR |
| Data | • Decline in mathematics proficiency rates for students in grades 6-8
 • Decline in the number of students assessed in grades 6-8 and 10
 • Decrease in the percent of students taking entry level courses (Math 1010) at Utah’s IHEs
 • Increase in the number of students enrolled in | • SPP/APR data show progress, except in areas of LRE, parent involvement, and post-secondary education
 • Majority of Utah students with disabilities have mild/moderate disabilities
 • 618 data show that as students reach secondary school settings, they are removed from the general education classroom more frequently and for longer periods of time for specialized instruction |
<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Input on Contributing Factors</th>
<th>Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>remediation courses at Utah’s IHEs</td>
<td>• 50% of Utah students with disabilities ages 6-21 are from low income settings, and 9.4% are ELs</td>
</tr>
</tbody>
</table>
| Accountability/Monitoring | • Attitudes and expectations of IEP teams and members
• IEP team selection of appropriate goals and services
• Alignment and support of specialized instruction to grade level core standards | • Utah has an ESEA Waiver, which has been approved on a year-to-year basis
• Utah’s ESEA Waiver is aligned with School Grades and PACE report—all of which promote the expectation for high expectations and achievement for all Utah students
• LEAs, with the assistance of the SEA, identify and correct findings of noncompliance
• Utah has low rates of dispute resolution compared to the national average
• There are patterns of noncompliance with general education teacher participation in IEP meetings, IEPs developed that address student involvement and progress in the grade level core standards with appropriate goals and services to support that involvement and progress, and participation in the statewide assessment
• General education teachers lack knowledge and implementation of strategies to support students struggling academically or behaviorally |
| Fiscal | • Low education funding | • Low education funding (increased state and decreased federal) causing large class sizes
• Salary supplement available for some secondary mathematics teachers, due to scarcity |
| Governance | • Secondary school schedules
• MTSS availability in secondary schools | Addressed in Infrastructure Analysis section |
<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Input on Contributing Factors</th>
<th>Data Analysis</th>
</tr>
</thead>
</table>
| Quality Standards | • Teaching Standards
• Leadership Standards
• Utah Core Standards
• Teacher Evaluations
• Data quality | • Implementation of data standards and consistent procedures required |

As part of the ongoing plans to continue engaging stakeholders around improvement efforts, the draft SSIP report was provided electronically to over 100 stakeholders for review, prior to completion and submission. This provided the USOE with an additional opportunity to review and revise the report.

In the next section, Utah’s infrastructure analysis is described. This analysis was conducted to determine the capacity of current state infrastructure to support improvement and build capacity at the local level in relation to the SiMR area.

Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA Appreciation for Assistance with Data Analysis

Stakeholder participation and authentic conversation focused on a common problem (mathematics proficiency of students with disabilities grades six through eight), coupled with the technical assistance provided by OSEP, MPRRC, TAESE, and Utah’s state contact from NCSI, has resulted in an honest dialogue of needed data and systems improvements. Assisted by these insights and TA resources, Utah is confident that it can develop an effective, scalable improvement plan that will result in improved outcomes for students with disabilities in mathematics over the next five years. Ongoing data reviews, conducted within the USOE and LEAs at the student, teacher, school, and LEA levels, to evaluate the effectiveness of implementation strategies and modify implementation will be conducted with stakeholders. In order to continue these efforts, the SEA will continue to include stakeholders in ongoing activities during Phases II–III, especially in areas regarding the initiatives the SEA is hoping to leverage, such as ESEA Flexibility, School Grades, and PACE Report. Due to the broadness of those initiatives, larger stakeholder representation will be sought out and encouraged, including the Governor’s education staff, Utah legislators, and school administrators from schools with varying School Grades and PACE progress levels.
State Infrastructure Analysis

Stakeholder Involvement and Engagement in Infrastructure Analysis

Utah, using a broad group of stakeholders to review and provide input, analyzed the capacity of its current infrastructure to support improvement and build capacity in LEAs to implement, scale up, and sustain the use of evidence-based practices to improve math performance for students with disabilities in grades six through eight. The infrastructure review process, facilitated by the use of the technical assistance document created by the Regional Resource Centers (RRCs) and a State Initiative Inventory, guided the state through a systematic identification of current state-level improvement plans and initiatives, including those utilized by multiple departments within the SEA (e.g., special education and general education), and the determination of the extent those initiatives are aligned, and how they are, or could be, integrated with the SSIP in the areas of improved math performance of students with disabilities in grades six through eight. The infrastructure analysis specifically reviewed the state’s systems in the areas of governance, fiscal, quality standards, PD/TA, data, and accountability/monitoring, to analyze the capacity of the state infrastructure to support improvements and build capacity at the local levels in relation to Utah’s SiMR. The results of the review, if applicable to the SSIP, are described below, as either a strength or a gap (full results in each area are attached). Stakeholder involvement in the infrastructure analysis process during Phase I of the SSIP is described below, with those stakeholders providing input on the infrastructure analysis in italics.

Table 8: Stakeholder Involvement throughout Infrastructure Analysis

<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
</table>
| April-May 2014 (Broad) | • State infrastructure analysis (RRC TA document)
 • State 618/EdFacts, SPP/APR, and accountability data analysis
 • Identifying draft SiMR | • In-person meetings
 • Webinars
 • Phone calls | • USOE Leadership
 • USOE Staff | • MPRRC
 • Other SEA Staff
 • TAESE |
| June-August 2014 (Broad and In-depth) | • Summary of state 618/EdFacts and SPP/APR Analysis
 • National 618/EdFacts and SPP/APR Analysis
 • State infrastructure analysis (RRC TA Document)
 • Stakeholder input
 • Identifying draft SiMR | • In-person meetings
 • Webinars
 • Phone calls
 • Emailed information and presentations | • USOE Leadership
 • USOE Staff | • OSEP
 • P&A
 • PTI
 • Statewide Law Conference (combination of general educators, special educators, parents, advocates, and administrators)
 • TAESE
 • USEAP |
<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>September-October 2014</td>
<td>• Summary of state 618/EdFacts and SPP/APR Analysis</td>
<td>• In-person meetings • Webinars • Phone calls • Emailed information and presentations</td>
<td>• USBE • USCSB • USOE Staff</td>
<td>• CCPD • Community Members • General Ed Teachers • IHEs • LCPD • LEA Sped Directors • OSEP • Other LEA Staff • Other SEA Staff • P&A • Paraeducators • PTA • PTI • School Administrators • Special Education Teachers • Title I Directors • UPDN Advisory Board • USEAP</td>
</tr>
<tr>
<td>(Broad and In-depth)</td>
<td>• LEA 618 data and SPP/APR Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Summary of LEA 618 data and SPP/APR analysis trends</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Statewide assessment data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LEA assessment data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Infrastructure analysis (RRC TA document and initiative inventory)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fiscal data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Monitoring and Dispute Resolution data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stakeholder input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Draft Theory of Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identifying draft SiMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November-December 2014</td>
<td>• Summary of data analysis listed above</td>
<td>• In-person meetings and conferences • Webinars • Phone calls • Emailed information and presentations</td>
<td>• USOE Staff</td>
<td>• CCPD • IHEs • LEA Sped Directors • LEA staff • P&A • PTI • UPDN • USCSB</td>
</tr>
<tr>
<td>(Broad and In-depth)</td>
<td>• Math proficiency data analysis (i.e., subgroup of statewide assessment data)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Accountability data analysis (e.g., ESEA Waiver, School Grades, PACE Report)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stakeholder input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Refining draft SiMR and Theory of Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January-April 2015</td>
<td>• Summary of data analysis listed above</td>
<td>• In-person meetings and conferences • Webinars • Phone calls • Emailed information and presentations</td>
<td>• USBE • USCSB • USOE Leadership • USOE Staff</td>
<td>• CCPD • Community Members • General Ed Teachers • IHEs • LCPD • LEA Sped Directors • NCSI • OSEP</td>
</tr>
<tr>
<td>(Broad and In-depth)</td>
<td>• Stakeholder input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LEA school- and teacher-level placement/LRE data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Criticality Index and personnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Data Identified, Selected, and Analyzed</td>
<td>Type of Involvement</td>
<td>Internal Stakeholders</td>
<td>External Stakeholders</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>• Comparison of math proficiency of students with disabilities to general education peers analysis (i.e., gen ed assessment data)</td>
<td></td>
<td></td>
<td>• Other LEA staff</td>
</tr>
<tr>
<td></td>
<td>• LEA-specific data analysis on SiMR area to select LEAs and schools for SSIP</td>
<td></td>
<td></td>
<td>• Other SEA staff</td>
</tr>
<tr>
<td></td>
<td>• Analysis of schools selected under ESEA Flexibility Waiver</td>
<td></td>
<td></td>
<td>• P&A</td>
</tr>
<tr>
<td></td>
<td>• Analysis of quality standards, governance, and PD/TA data</td>
<td></td>
<td></td>
<td>• Paraeducators</td>
</tr>
<tr>
<td></td>
<td>• Analysis of research on effective interventions for mathematics</td>
<td></td>
<td></td>
<td>• PTA</td>
</tr>
<tr>
<td></td>
<td>• Finalize Theory of Action</td>
<td></td>
<td></td>
<td>• PTI</td>
</tr>
<tr>
<td></td>
<td>• Broad Coherent Improvement Strategy selection</td>
<td></td>
<td></td>
<td>• School Administrators</td>
</tr>
<tr>
<td></td>
<td>• Refining and finalizing SiMR and targets</td>
<td></td>
<td></td>
<td>• Special Education Teachers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TAESE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• UPDN Advisory Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• USEAP</td>
</tr>
</tbody>
</table>

Infrastructure Strengths

Utah has a variety of strong, aligned statewide initiatives in the areas of PD/TA, data, and SEA support (i.e., accountability/monitoring, fiscal, quality standards, and governance) that are associated with high-performing programs for students with disabilities (as well as those without disabilities), used to support improvement of student outcomes, and improve LEA capacity to implement, scale up, and sustain the use of evidence-based practices in Utah’s selected SiMR.

First, Utah has statewide professional learning standards (e.g., quality standards and governance) codified in 53A-3-701 since 2014, defined as a comprehensive, sustained, and intensive approach to improving teachers’ and principals’ effectiveness in raising student achievement. Utah LEAs are required to implement high quality professional learning that meets the following standards (based on the Learning Forward Standards [2015]):

- Occurs within learning communities committed to continuous improvement, individual and collective responsibility, and goal alignment;
• Requires skillful leaders who develop capacity, advocate, and create support systems for professional learning;
• Requires prioritizing, monitoring, and coordinating resources for educator learning;
• Uses a variety of sources and types of student, educator, and system data to plan, assess, and evaluate professional learning;
• Integrates theories, research, and models of human learning to achieve its intended outcomes;
• Applies research on change and sustains support for implementation of professional learning for long-term change; and
• Aligns its outcomes with performance standards for teachers and school administrators as described in rules of the State Board of Education (i.e., Utah Effective Teaching Standards and Utah Effective Leadership Standards) and performance standards for students as described in the Core curriculum standards adopted by the State Board of Education.

The Utah Effective Teaching Standards and Utah Educational Leadership Standards (summary attached) are a written articulation of what highly effective teaching and leading “looks like”, as adopted by the USBE in R277-530, and provide a resource for stakeholders to analyze and prioritize expectations for high quality instruction. The Standards are based upon the concepts adopted by the Council of Chief State School Officers (CCSSO), as well as the needs of Utah’s school teachers, administrators, and IHEs. Standards align with the skills necessary to successfully lead educators to teach the Utah Core Standards and improve outcomes for Utah students. These standards direct the work of SEA and LEA staff by providing both quality standards and governance in designing and providing high quality professional learning opportunities, regardless of topic area, thereby impacting PD/TA.

The foremost strength of the Utah model for professional learning, supported by SEA TA documents that target specific skills needed by educators and school leaders to improve student performance, is an existing high expectation across the public of what successful education “looks like.” Looking back at the primary root causes of Utah’s math performance for students with disabilities, demonstrates that the existing state law and standards not only include high expectations for teachers and administrators, but also define an expectation for content knowledge and instructional planning to occur based on the state grade-level standards and instructional best practices. These expectations are evident in the language included in both standards by using terminology such as the teacher “understands learner differences and holds high expectations of students, . . . collaborates with families . . . to promote student growth and development, . . . creates a learning culture that encourages individual learners to persevere and advance” (USOE, 2013). School administrators are held to those same high expectations with Utah Educational Leadership Standards requiring them to “establish and measurable expectations for all students, . . . incorporate diverse perspectives and build consensus to provide equitable, appropriate, and effective learning opportunities for every student to achieve, . . . [and] require all educators to know and use” (USOE, 2011). These requirements, which apply to all Utah educators and administrators, clearly define expectations for both students with disabilities and the professionals who serve to educate them, while also requiring collaboration with parents to improve outcomes. These universal, general education supports
alone address two of the three primary root causes identified initially by stakeholders and supported through data analysis and research.

The USBE has defined licensure requirements for general education secondary teachers of mathematics and special educators. In the last two years, the USBE has added a requirement for special educators serving as the “teacher of record” for students with disabilities in mathematics to demonstrate competency with state secondary mathematics requirements, which now requires additional IHE coursework in mathematics and passing of a related PRAXIS Series® mathematics assessment. This state requirement, while increasing the numbers of secondary special educators with advanced knowledge and understanding of mathematics concepts, has also resulted in the identification of common misperceptions regarding the need and ability of students with disabilities to access high-level, abstract mathematics. With USOE support, LEAs have increased opportunities for co-teaching in middle schools to address the need for a partnership of mathematics content knowledge (general education teacher) and ability to differentiate and provide specialized instruction (special education teacher). The co-teaching model not only emphasizes the strengths of both teachers, but allows them to build capacity in knowledge and application of good-quality effective instruction which addresses the needs of all students. Utah student data from classrooms where the educators participated in content and co-teaching PD/TA show that both students with and without disabilities make gains of 68–79% in a co-taught classroom, supporting this dual approach.

During the 2015 legislative session, several bills were passed and appropriations made that support the work defined within this SSIP (e.g., governance and PD/TA). State public education funds were increased 4% to address both population growth and the increased cost of benefits such as health care and retirement. A new initiative designed to strengthen college and career readiness by enhancing the skill levels of school counselors to provide college and career counseling to all students received $400,000 of State support, and will provide a new College and Career Readiness Certificate for all school counselors who meet the required criteria. Funds were provided to support teachers who are currently licensed to teach secondary mathematics in the development of leadership skills so that LEAs can establish coaching and mentoring programs. Although there is no money appropriated, the Utah House of Representatives passed a resolution in support of Governor Herbert’s PACE goals and recognized the importance of attaining proficiency in mathematics while in high school (House Resolution 5, 2015). The Career and College Readiness Mathematics Competency bill requires the USBE to establish mathematics competency standards for all students (Senate Bill 196, 2015). A statute that provides the opportunity for some secondary math teachers to be eligible to receive an annual stipend of up to $4,100 has existed for several years (53A-17a-156).

Second, Governor Herbert, on July 17, 2014, outlined three principles to guide educational improvement efforts and stated “More than ever, we must raise the skill level of our students. We must not shy away from high standards or challenging exams, but work to give our students the best education possible, preparing them to lead successful lives and compete in the global marketplace” (State of Utah, Office of the Governor, 2015). The three principles described below align with the efforts of Utah’s SSIP, and should be leveraged to demonstrate solidarity on the need for changing expectations and practices.
1. Maintain high academic standards in all subjects, and for all students.
2. Monitor and limit the federal government’s role in education.
3. Preserve our state and local control of our education system, including curriculum, materials, testing, and instructional practices.

Thirdly, additional infrastructure supports have been designed and facilitated by USOE staff to support the capacity of LEAs to address the instructional needs of all students. Utah’s ESEA Flexibility Waiver addresses the implementation of Utah Core Standards and use of UDL to deliver instruction that meets the needs of diverse learners, and requires LEA adoption of the World-Class Instructional Design and Assessment (WIDA) English language proficiency standards to support English acquisition and that all students demonstrate growth and proficiency. Initiatives implemented by the Teaching and Learning, Assessment, Title I and Federal Programs, CTAE, and Data and Statistics sections of the USOE address the need to develop LEA policies and practices that ensure all teachers are prepared and trained to work with students with disabilities, students are provided access to differentiated instruction and effective interventions to meet their needs, all students are included in accessible statewide assessments, and that all students are supported to reach college and career readiness upon leaving high school. All programs supported with federal funds (i.e., Title I, Title III, IDEA) have collaborated on the implementation of the Utah Consolidated Application (UCA), which allows LEAs to develop a single improvement plan that addresses their entire academic program need and the funding sources that will be used to support each improvement activity. In many cases, multiple sources of funding are braided in order to support improvement for all students while honoring the purposes for which the funding was awarded.

Finally, in addition to those infrastructure supports designed and facilitated by USOE staff in support of all students, there are initiatives implemented by the USOE Special Education Services section that also serve to support improved outcomes, such as the UPDN, Results-Driven Accountability (RDA), and UMTSS. The UPDN system for statewide special education professional learning is based on state and LEA data and supports the existing general education professional learning opportunities (e.g., Professional Learning Series [PLS] and Title I), and provides LEAs with varying levels of supported general education and special education learning experiences, based on their needs and data. Aligned with UPDN support is the RDA general supervision monitoring system (i.e., UPIPS) and UMTSS, all of which provide a multi-tiered model of support to LEAs. UPDN PD/TA and UMTSS offers three levels of support, including a Universal (available to all), Targeted (available to some), and Intensive (available to a few) Tier. RDA Monitoring allows for five levels of support to LEAs, including Supporting and Guiding Tiers, which provide minimal SEA efforts, to the Assisting Tier, which involves more SEA efforts, to Coaching and Directing Tiers involving ongoing supports, activities, and program implementation changes coached and/or directed by the SEA. All tier decisions are data-based, appealable, and rely on collaboration with the LEA during improvement planning.
Figure 14: Alignment of PD/TA, UMTSS, and RDA Support

UMTSS, a five-year state project funded by the use of State Personnel Development Grant (SPDG) and IDEA funds, assists SEA and LEA staff to understand the need and apply the skills needed to develop and implement a framework for implementing a data-driven, problem-solving, multi-tiered model for supports that builds the capacity for sustained implementation across whole LEAs and the state, regardless of personnel changes. Utah’s model for MTSS (i.e., UMTSS) includes the following critical components: evidence-based practices, instructionally relevant assessments, team-based problem solving, data-based decision making, evidence-based professional learning, supportive leadership, and meaningful parent and student involvement. The critical components of MTSS are embedded in Utah’s Theory of Action. UMTSS staff are placed in strategic locations in different departments throughout the SEA to ensure that policy and practice decisions are rooted in the multi-tiered system of support model, incorporate the critical components, and address the needs of all learners, including those with diverse needs, such as students with disabilities, students who are EL, and those receiving Title I and other supportive services.

SEA initiatives are aligned with and support the SEA process used to identify initiative needs, grants, or other statewide activities that impact the capacity of LEAs and schools. This SEA process begins through the SEA focus on data use, as evidenced by the Public Education Data Gateway (a public website that allows for data aggregation by the user), interagency collaboration around data results and improvement efforts, and identified state- and LEA-level priorities which direct resources and communicate results and progress. Other SEA
infrastructure strengths included in the selection process include the solicitation and use of stakeholder input, interagency collaboration and communication, use of data to budget and plan long-term, and aligned section priorities that direct work with LEAs. None of this would be possible without the proactive alignment of SEA and LEA initiatives and regular and positive communication between the SEA, LEAs, and Utah IHEs. These initiatives have been aligned to achieve common goals of the SEA, LEAs, and schools, and are positioned to leverage resources that improve outcomes for all students, including those with disabilities while working at the state and local levels.

An example of another infrastructural strength between the SEA and IHEs is the partnership between the CEEDAR Center, USOE, the University of Utah, Utah State University, and Weber State University. The CEEDAR Center is funded by the OSEP at the USDOE. Utah applied and was selected to receive intensive TA. Through this intensive TA, CEEDAR staff will provide support to Utah partners (SEA, LEAs, and IHEs) to align their professional learning standards for teachers and leaders with personnel preparation, program approval and accreditation, and program evaluation systems. The CEEDAR Center provides ongoing TA with a focus on multi-tiered system of support and the implementation of evidence-based practices to increase opportunities to learn for teachers and leaders. Anticipated outcomes of this alignment include improved performance of all learners, including students with disabilities. Through the collaboration, CEEDAR partners in Utah will develop a “TA Blueprint” to identify goals, objectives, tasks, and activities that address targeted areas of need, as well as how Utah can support capacity-building and scale-up. The aligned support and TA will also address root causes of math performance, and the resulting changes to educator and leadership programs will in time result in improved outcomes for all students.

The work of the UPDN, UMTSS, CEEDAR, and other SEA professional learning opportunities is rooted within implementation science, considering both stages of implementation and drivers of implementation (National Implementation Research Network, 2015). The SEA, to develop the capacity for sustainable reform, considered both the capacity of the SEA and the capacity of the LEAs and other state agencies and organizations, recognizing that reform efforts require “more comprehensive oversight, planning, and problem solving than most SEAs and LEAs are used to” (Reform Support Network, 2013, p. 3). Included in those planning efforts is the understanding that there are six practices associated with higher achievement when coupled with high expectations (Telfer, 2011):

1. Effective data use;
2. Focused, nonnegotiable goals (which are required of all personnel);
3. The selection and implementation of shared instructional practices which focus on effective instruction and require collaboration;
4. Deep implementation of selected strategies, with the fidelity and scale sufficient to resolve problems;
5. Monitoring and providing feedback and support on how to teach, rather than what to teach; and
6. Continuous inquiry and learning to reflect on and improve practices.
Currently, **USOE Leadership and staff support the expectation that collaboration is necessary to move student outcomes and are committed to sharing responsibility and efforts for all students.** This has generated much discussion and planning around areas of potential alignment and strategic revision of SEA TA Manuals to include components of MTSS and the requirement that all students access Tier I core instruction, while receiving necessary interventions and specialized instruction throughout the tiers. The SEA has many infrastructure strengths that will support the SSIP and positively impact the SiMR, as the infrastructure supports described above proactively address the root causes of the current SiMR.

Infrastructure Gaps

Despite infrastructure strengths in PD/TA, data, and SEA support, these same areas also pose unique challenges that may impact Utah’s selected SiMR. In particular, best practices are not consistently coordinated and applied across the SEA with fidelity, nor does the SEA utilize fidelity/quality standard measures to ensure consistent application on PD/TA or full implementation, operationalized as 50% or more of the intended practitioners are using the intended implementation with fidelity and good outcomes (National Implementation Research Network, 2015; Fixsen, 2005). This alone is cause for concern when designing initiatives, as the “the most effective intervention will not produce positive effects if it is not implemented” (Fixsen, 2005, p. 55).

In addition to Utah’s struggle to maintain fidelity with existing initiatives, the majority of current measurement of initiative results remain focused on amount of support (inputs), rather than change in teacher behavior/student outcome (outputs) (Guskey, 2002). Despite existing professional learning standards, some SEA and LEA staff lack full understanding and agreement of the design/contents of high-quality professional learning, lack of understanding of the instructional strength of UDL, or duplicate efforts inefficiently, and all LEAs struggle to find adequate fiscal resources to implement coaching, shown to positively impact the implementation of learning to classroom instruction, to ensure ongoing implementation/application of professional learning within classrooms (Fixsen, 2005). Although the SEA has provided a new system of PD/TA that focuses tiered support to LEAs based upon needs and improvement plans, LEAs continue to attempt access to PD/TA outside of that framework, resulting in scattered requests for assistance that do not impact priority areas for improvement.

Additionally, although the SEA provides the Public Education Data Gateway resource, SEA staff, LEAs, and the public are not provided with focused data reporting and progress monitoring reports around state priority areas, frequently resulting in data overload and scattered initiatives dependent upon the priorities of individual SEA and LEA personnel.

Most SEA staff lack access and time to research databases, including professional journals, to enable the discovery, use, citation, and explanation of evidence-based practices. Also, although the SEA engages stakeholders for data, policy, and practice review and input, this engagement occurs within silos, without broad representation of all impacted stakeholders and without widespread dissemination of results and decisions (Cashman, 2014; Hayes & Lillenstein, 2015; Rhim, 2014; Zorich, 2008).
At the SEA, there remains a need to ensure SEA initiatives are aligned, (Hayes & Lillenstein, 2015) nonnegotiable, sustainable, and address the needs of students with disabilities across departments and all staff (i.e., governance). These activities need to occur with ongoing collaboration and cross-departmental planning, assessment and data review, communication, and problem solving; all of which are vital to successful implementation of a relatively new state Core in mathematics and a one-year-old statewide assessment. As discussed previously, Utah’s scarcity of secondary general education mathematics teachers, special education teachers (with math Core content knowledge) and SLPs, result in an ongoing dilemma for LEAs with the provision of grade-level mathematics instruction, supplemented by specialized instruction. Although addressed in the SSIP, work is currently underway at the USOE to include aligned activities within the Excellence (Equity) Plan with an anticipated completion date of June 1, 2015.

Individual legislative actions recognized through bill language and broadcasted discussions, both recent and historical, send mixed messages about the public expectations of students with disabilities and their ability to access Utah Core Standards, participate in statewide assessments, or graduate ready for college and career.

In LEAs, many of the infrastructure gaps are the same as at the SEA level, resulting in administrators and teachers who may not be prepared with the appropriate content or pedagogy in preservice or inservice to address the needs of a diverse group of students, lack of experience in implementing a newly required state Core being phased in over the last few years, and limited time to explore, plan for, or implement evidence-based interventions designed to address the needs of specific students. These gaps are exponentially compounded by the limited research conducted that addresses the specific needs of secondary students within a secondary system.

The gaps mentioned above directly contribute to the root causes of Utah’s low performance of students with disabilities on SAGE mathematics assessments and reinforce the impact of infrastructure gaps to mathematics performance of students with disabilities.

Infrastructure Alignment with Data Analysis, SiMR, Improvement Strategies, and Theory of Action

While all of these infrastructure gaps directly impact the mathematics performance of students with disabilities (i.e., SSIP), when considered with stakeholder feedback and the findings from the data analysis (e.g., Utah’s low levels of mathematics proficiency of students with disabilities are attributed to: (1) teacher, parent, and student attitudes and behavior, (2) teacher depth of content knowledge and ability to provide effective math instruction, and (3) an educational system that decreases instructional support and interventions in the secondary settings, during a time when the mathematics Core standards become more rigorous and abstract), Utah was able to drill down and identify those gaps/root causes with the highest impact on changing student outcomes, both for students with disabilities and their non-disabled peers. Gaps, while ultimately impacting student outcomes, address needed changes in teacher and leader behaviors, as well as IEP team decisions, which include parents and students with disabilities.

Those “high impact” root-cause gaps are included in Utah’s Theory of Action and form the foundation for the selection of Broad Coherent Improvement Strategies, as well as remedies
considered with the current SEA initiative efforts regarding UPDN, RDA, and UMTSS, and the SEA ESEA efforts and general education academic improvement initiatives.

Summary of Infrastructure Analysis, Aligned with State Systems, Data Analysis, and Stakeholder Input

Stakeholder input, data and infrastructure analysis, and research identified high-impact gaps/root causes which contribute to Utah’s low mathematics performance of students with disabilities in grades six through eight. These factors and related gaps are identified in italics below. Other factors, grouped under the relevant State Systems topic area (and considered by the stakeholders during the data and infrastructure analysis) are included in this summary, but were either determined not to have significant strength in impacting student outcomes at this time or were data findings that focused the stakeholder input and infrastructure and data analysis process. Addressing the italicized items are critical to changing the mathematics outcomes of all students in Utah, and particularly those with disabilities.

The state data analysis, coupled with the state infrastructure analysis, led to the selection of Utah’s SiMR by allowing for the selection of the area that will have both a large impact on students with disabilities, as well as an impact on non-disabled peers, due to the alignment of initiatives and leveraging of activities (i.e., infrastructure strengths), especially in an area that impacts both populations (i.e., mathematics performance), by improving the infrastructure gaps that will lead to improved mathematic outcomes for all Utah students.

Table 9: Stakeholder Involvement Throughout Infrastructure Analysis

<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Input On Contributing Factors</th>
<th>Data Analysis</th>
<th>Infrastructure Analysis</th>
</tr>
</thead>
</table>
| Professional Development and Technical Assistance | - Low expectations of administrators, teachers, students, and parents
- Teacher ability to provide effective mathematics instruction | - New state system of PD/TA which addresses LEA capacity, tiered supports, and evidence-based PD
- LEAs generally have not incorporated PD/TA into improvement plans designed to address Utah’s SiMR | **Strengths:**
- Use of formal standards to direct/align SEA and LEA efforts
- Expectation within publicized plans for improvement that include students with disabilities and teachers to have content knowledge
- UPDN
- PLS
- Title I PD/TA
- RDA
- UMTSS | **Gaps:**
- Measurement of student behavior (output)
- Measurement of teacher behavior (output) |
<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Input On Contributing Factors</th>
<th>Data Analysis</th>
<th>Infrastructure Analysis</th>
</tr>
</thead>
</table>
| Data | • Decline in mathematics proficiency rates for students in grades 6-8 | • SPP/APR data show progress, except in areas of LRE, parent involvement, and post-secondary education | • Fidelity measures
• Understanding of current standards regarding professional learning, use of UDL, and teacher and leader responsibilities
• LEA selection of PD/TA
• Teacher knowledge and application of content and pedagogy |
| | • Decline in the number of students assessed in grades 6-8 and 10 | | |
| | • Decrease in the percent of students taking entry level courses (Math 1010) at Utah’s IHEs | | |
| | • Increase in the number of students enrolled in remediation courses at Utah’s IHEs | | |
| Accountability/Monitoring | • Attitudes and expectations of IEP teams and members | • Utah has an ESEA Waiver, which has been approved on a year-to-year basis | Strengths:
• RDA
• ESEA Flexibility Waiver, School Grades, and PACE Report |
| | | | Gaps:
• Focused reports
• Progress monitoring |
<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Input On Contributing Factors</th>
<th>Data Analysis</th>
<th>Infrastructure Analysis</th>
</tr>
</thead>
</table>
| | • IEP team selection of appropriate goals and services
| | • Alignment and support of specialized instruction to grade level core standards | • Utah’s ESEA Waiver is aligned with School Grades and PACE report—all of which promote the expectation for high expectations and achievement for all Utah students
| | | • LEAs, with the assistance of the SEA, identify and correct findings of noncompliance
| | | • Utah has low rates of dispute resolution compared to the national average
| | | • There are patterns of noncompliance with general education teacher participation in IEP meetings, IEPs developed that address student involvement and progress in the grade level core standards with appropriate goals and services to support that involvement and progress, and participation in the statewide assessment
| | | • General education teachers lack knowledge and implementation of strategies to support students struggling | • Aligned monitoring across SEA departments

Gaps:
• Nonnegotiable SEA-wide priorities that are incorporated into accountability and monitoring activities
• IEP team decisions for services, goals, and placement
<table>
<thead>
<tr>
<th>State Systems</th>
<th>Stakeholder Input On Contributing Factors</th>
<th>Data Analysis</th>
<th>Infrastructure Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal</td>
<td>• Low education funding</td>
<td></td>
<td>Strengths:</td>
</tr>
<tr>
<td></td>
<td>• Low education funding (increased state and decreased federal) causing large class sizes</td>
<td></td>
<td>• SEA data review process for budgeting and planning</td>
</tr>
<tr>
<td></td>
<td>• Salary supplement available for some secondary mathematics teachers, due to scarcity</td>
<td></td>
<td>• UCA review process for LEAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Increase in state funding for all students</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Leveraging of funds for UMTSS and CEEDAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Additional funding to support student planning with counselors for College and Career Readiness</td>
</tr>
<tr>
<td>Governance</td>
<td>• Secondary school schedules</td>
<td>Addressed in Infrastructure Analysis section</td>
<td>Gaps:</td>
</tr>
<tr>
<td></td>
<td>• MTSS availability in secondary schools</td>
<td></td>
<td>• Resources for coaching/fidelity implementation and sustainability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strengths:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Development of written standards to address teacher and administrator responsibilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Solicitation and use of stakeholder input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Regular communication and positive relationship with USOE, IHEs, and LEAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Interagency collaboration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• CEEDAR Center Intensive TA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Identified inclusive priorities that direct SEA work with shared responsibility and effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Alignment of many state initiatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• UMTSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Governor’s and Legislative acknowledgement of high</td>
</tr>
<tr>
<td>State Systems</td>
<td>Stakeholder Input On Contributing Factors</td>
<td>Data Analysis</td>
<td>Infrastructure Analysis</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>expectations for math proficiency for all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gaps:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Access to research</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Structure for SEA collaborative problem solving, data review</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Siloed decision making and dissemination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Relatively new state core and statewide assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Scarce secondary general and special education teachers and SLPs</td>
</tr>
</tbody>
</table>
| Quality Standards | • Teaching Standards
| | • Leadership Standards
| | • Utah Core Standards
| | • Teacher Evaluations
| | • Data quality | • Implementation of data standards and consistent procedures required | |
| | | | **Strengths:** |
| | | | • Codified Professional Learning Standards |
| | | | • Utah Effective Educator Standards |
| | | | • Utah Educational Leadership Standards |
| | | | • Written standards in place for data, fiscal, monitoring, and accountability |
| | | | **Gap:** |
| | | | • Implementation across SEA work |

As part of the ongoing plans to continue engaging stakeholders around improvement efforts, the draft SSIP report was provided electronically to over 100 stakeholders for review, prior to completion and submission. This provided the USOE with an additional opportunity to review and revise the report.

In the next section, Utah’s SiMR is described. The SiMR was developed following a detailed data and infrastructure analysis in conjunction with stakeholder involvement and engagement. The selected SiMR area will result in closing the achievement gap between Utah students with disabilities and their nondisabled peers, while also supporting improved outcomes for all Utah students.

Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA

Appreciation for Assistance with Infrastructure Analysis

As described earlier in the document, stakeholders were included during the entire SSIP process, including a review of the SEA infrastructure, as they either pay for, provide, receive,
participate in or collaborate on IDEA services and issues, and/or provide expertise in the State-identified Measurable Result (SiMR) on improving mathematics performance of students with disabilities in sixth through eighth grade and represent a comprehensive viewpoint of the needs of Utah students with disabilities. Utah's stakeholders are vital to the success of Utah's SiMR, and their efforts are valued and integral to the SSIP Phase I, as is their ongoing commitment to support and continue work towards improving outcomes for students with disabilities during the implementation of Phase II.
State-identified Measurable Result (SiMR)

Stakeholder Involvement and Engagement in the SiMR

Utah stakeholders, described below, were involved in each step of the SSIP Phase I process. Those who provided input regarding the selection of the SiMR are italicized.

Table 10: Stakeholder Involvement throughout SiMR Development

<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>April-May 2014 (Broad)</td>
<td>• State infrastructure analysis (RRC TA document)</td>
<td>• In-person meetings</td>
<td>• USOE Leadership</td>
<td>• MPRRC</td>
</tr>
<tr>
<td></td>
<td>• State 618/EdFacts, SPP/APR, and accountability data analysis</td>
<td>• Webinars</td>
<td>• USOE Staff</td>
<td>• Other SEA Staff</td>
</tr>
<tr>
<td></td>
<td>• Identifying draft SiMR</td>
<td>• Phone calls</td>
<td></td>
<td>• TAESE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Emailed information and presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June-August 2014 (Broad and In-depth)</td>
<td>• Summary of state 618/EdFacts and SPP/APR Analysis</td>
<td>• In-person meetings</td>
<td>• USOE Leadership</td>
<td>• OSEP</td>
</tr>
<tr>
<td></td>
<td>• National 618/EdFacts and SPP/APR Analysis</td>
<td>• Webinars</td>
<td>• USOE Staff</td>
<td>• P&A</td>
</tr>
<tr>
<td></td>
<td>• State infrastructure analysis (RRC TA Document)</td>
<td>• Phone calls</td>
<td></td>
<td>• PTI</td>
</tr>
<tr>
<td></td>
<td>• Stakeholder input</td>
<td>• Emailed information and presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identifying draft SiMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septembe r-October 2014 (Broad and In-depth)</td>
<td>• Summary of state 618/EdFacts and SPP/APR Analysis</td>
<td>• In-person meetings and conferences</td>
<td>• USBE</td>
<td>• CCPD</td>
</tr>
<tr>
<td></td>
<td>• LEA 618 data and SPP/APR Analysis</td>
<td>• Webinars</td>
<td>• USCSB</td>
<td>• Community Members</td>
</tr>
<tr>
<td></td>
<td>• Summary of LEA 618 data and SPP/APR analysis trends</td>
<td>• Phone calls</td>
<td>• USOE Staff</td>
<td>• General Ed Teachers</td>
</tr>
<tr>
<td></td>
<td>• Statewide assessment data analysis</td>
<td>• Emailed information and presentations</td>
<td></td>
<td>• IHEs</td>
</tr>
<tr>
<td></td>
<td>• LEA assessment data analysis</td>
<td></td>
<td></td>
<td>• LCPD</td>
</tr>
<tr>
<td></td>
<td>• Infrastructure analysis (RRC TA document and initiative inventory)</td>
<td></td>
<td></td>
<td>• LEA Sped Directors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• OSEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Other LEA Staff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Other SEA Staff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• P&A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Paraeducators</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Parents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PTI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• School Administrators</td>
</tr>
<tr>
<td>Date</td>
<td>Data Identified, Selected, and Analyzed</td>
<td>Type of Involvement</td>
<td>Internal Stakeholders</td>
<td>External Stakeholders</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| November-December 2014 (Broad and In-depth) | • Fiscal data analysis
• Monitoring and Dispute Resolution data analysis
• Stakeholder input
• Draft Theory of Action
• Identifying draft SiMR | • In-person meetings and conferences
• Webinars
• Phone calls
• Emailed information and presentations | • USOE Staff | • Special Education Teachers
• Title I Directors
• UPDN Advisory Board
• USEAP |
| January-April 2015 (Broad and In-depth) | • Summary of data analysis listed above
• Math proficiency data analysis (i.e., subgroup of statewide assessment data)
• Accountability data analysis (e.g., ESEA Waiver, School Grades, PACE Report)
• Stakeholder input
• Refining draft SiMR and Theory of Action | • In-person meetings and conferences
• Webinars
• Phone calls
• Emailed information and presentations | • USBE
• USCSB
• USOE Leadership
• USOE Staff | • CCPD
• IHEs
• LEA Sped Directors
• LEA staff
• P&A
• PTI
• UPDN
• USCSB
• USBE
• USCSB
• USOE Leadership
• USOE Staff |
Identifying Utah’s SiMR

The SiMR is based on multiple data analyses which identified low math achievement in grades six through eight as a persistent problem statewide. Additionally, our infrastructure analysis, while showing strengths in some systems, also revealed gaps in Utah’s capacity that may impact our ability to achieve the SiMR focused on these grades. Based on stakeholder consultation our SiMR is focused on a specific subset and is:

Utah will increase the percentage of students with SLI or SLD in grades six through eight who are proficient on the SAGE mathematics assessment by 11.11% over a five-year period.

This SiMR is based on both broad and in-depth systematic data analysis, stakeholder feedback, and Utah’s infrastructure analysis; a combination of SSIP efforts conducted in Utah over the last year. In addition, it is student-based and aligned with SPP/APR Indicator 3C as well as Utah’s ESEA Flexibility Waiver and other SEA initiatives such as utilization of a variety of school staff and related service providers described earlier under Infrastructure Strengths (p. 49).

When Utah meets the targets established with the subset of students identified within the SiMR through the use of Coherent Improvement Strategies, achievement results for the entire State will improve not only in mathematics, but may also improve graduation rates and post-school outcomes while decreasing dropout rates. Research has shown that “there is a substantial correlation between students completing algebra and enrolling in four-year colleges” (Williams, 2011, p. 1).

SiMR Target Setting

Utah used a systematic analysis process which considered current and trend data, research, and the review of infrastructure strengths and gaps to determine root causes for the current outcomes, enable the alignment and leverage of existing initiatives, maximize resources, and encourage involvement and collaboration of stakeholders in developing the SSIP to impact the selected SiMR.
The target pattern for Utah’s SiMR follows the same pattern as established for Utah’s ESEA Flexibility Waiver AMO targets overall. The long-term goal is to reduce by half the gap between the current percent of students with disabilities who are proficient on the SAGE assessment and the current percent of all students who are proficient on the SAGE over the next five years (by FFY 2018). The starting point is the percent of students with disabilities classified as having an SLI or an SLD who are proficient on the SAGE assessment in FFY 2013. During the intervening years, Utah must incrementally increase the percentage of students with disabilities who are proficient.

Selecting a Subgroup for Broad Coherent Improvement Strategies

Utah conducted a detailed review of SAGE assessment results to identify the group(s) of students to target for improvement efforts. A review of proficiency levels reveals that across grades six through eight, an increasingly larger percent of students are in the “Approaching Proficient” (Proficiency Level 2) category and, if targeted for improvement, are ready to move into proficiency. This change would support students at a critical stage in learning, as “middle school is the critical stage for closing any gaps between the students’ knowledge base and the math skills needed to succeed in algebra” (Williams, 2011).

Figure 15: Proficiency of Students with Disabilities Grades 6–8

When considering the level of proficiency on SAGE assessments for students with disabilities in grades six through eight in the area of mathematics, it is clear that by grade eight there is a substantial reduction in proficiency. Students in grades six and seven (both with and without disabilities) are achieving higher levels of proficiency on all subtests of the SAGE assessment. If these students are targeted for more intensive instruction, the skills they achieve will support higher proficiency rates, and likely transfer to higher proficiency rates in future mathematics courses.
Figure 16: Proficiency Levels of Students with Disabilities Grades 6–8

Because students with and without disabilities are “Approaching Proficient” at comparable rates, an analysis of disability-specific variables was conducted to determine whether any of these variables could help the state to identify the most effective group(s) of students to target for the SiMR.

A review of proficiency rates based on the amount of time the student spends in the general education setting reveals a relationship between the amount of time students spend in general education settings and achievement of proficiency. Additionally, there appears to be a relationship between students spending 80% or more of the day in general education settings and achieving a score of Approaching Proficiency than students spending less time in general education settings.

Figure 17: Students with Disabilities—Mathematics Proficiency Levels and Access to General Education Grades 6–8
A review of students scoring at the Approaching Proficient level and spending 80% or more of the day in a general education setting by disability type indicates an unexpected variance in proficiency by grade level for students with SLI and SLD. Over the three-year period, the percent of students with SLI scoring at the Approaching Proficient level decreases, while the percent of students with SLD increases.

Figure 18: Students with Disabilities Grades 6–8 Spending 80% or More in General Education and Scoring “Approaching Proficient” by Disability Type

A closer look at students in these two disability categories indicates students with SLI or SLD who are spending 80% or more of the day in the general education setting and scoring at the Approaching Proficient level would benefit from the implementation of Broad Coherent Improvement Strategies. This group of students is uniquely positioned so that a change in proficiency rates among these students will be substantial enough to generate a change in proficiency rates among all students with disabilities in the state.

Figure 19: Mathematics Proficiency of Students with SLI or SLD Spending 80% or More in General Education
Upon identification of students with SLI or SLD in grades six through eight as the target population for improvement, further in-depth data analysis was conducted to determine reasonable targets for annual improvement.

Confirmation of Potential Impact of SiMR Subgroup on State Results

Modeled after Utah’s ESEA Flexibility Waiver approach of reducing the gap between students who are non-proficient and students who are proficient, Utah’s SiMR addresses the gap between the percentage of students with disabilities achieving proficiency and the percentage of students without disabilities achieving proficiency.

Table 11: Achievement Gap Between Students with Disabilities and Nondisabled Peers Grades 3–8, 10

<table>
<thead>
<tr>
<th>Group</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students with Disabilities</td>
<td>12.90%</td>
</tr>
<tr>
<td>Students without Disabilities</td>
<td>42.20%</td>
</tr>
<tr>
<td>Achievement Gap</td>
<td>29.30%</td>
</tr>
<tr>
<td>50% of Gap</td>
<td>14.65%</td>
</tr>
</tbody>
</table>

For Utah to reduce the proficiency gap between students with and without disabilities, the State must improve SAGE assessment results by 14.65% over the next five years. If the State increased proficiency at an even increment each year, the annual increase needed would be 2.93%. Expanded over the five-year period, the percent of students with disabilities who are proficient will consistently increase. To achieve this level of increase, 875 students with disabilities must move from not proficient to proficient each year.

Narrowing in on the target group identified for the SiMR, for Utah to reduce the proficiency gap between students with SLI or SLD who are proficient and students without disabilities who are proficient, the State must improve SAGE assessment results by 11.11% over the next five years. If the State increased at an even increment each year, the annual increase needed would be 2.22%.

Table 12: Achievement Gap Between Students with SLI or SLD and Nondisabled Peers in Grades 6-8

<table>
<thead>
<tr>
<th>Group</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proficient Students with SLI or SLD Grades 6-8</td>
<td>14.90%</td>
</tr>
<tr>
<td>Proficient Students without Disabilities Grades 6-8</td>
<td>37.12%</td>
</tr>
<tr>
<td>Achievement Gap</td>
<td>22.22%</td>
</tr>
<tr>
<td>50% of Gap</td>
<td>11.11%</td>
</tr>
</tbody>
</table>

Expanded over the five year period, the percent of students with disabilities who are proficient must consistently increase. To achieve this level of increase, 414 students with SLI or SLD in grades six through eight must move from not proficient and approaching proficient to proficient each year. Further, the increased rate of proficiency attained during the prior year must be maintained.
Table 13: Five Year Growth to Close the Achievement Gap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth (%)</td>
<td>14.90%</td>
<td>17.12%</td>
<td>19.35%</td>
<td>21.57%</td>
<td>23.79%</td>
<td>26.01%</td>
</tr>
</tbody>
</table>

When reviewed at each grade level, Utah is able to identify the number of students with SLI or SLD who must achieve proficiency each year.

Table 14: Count of Proficiency Required Annually to Close the Achievement Gap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>353</td>
<td>541</td>
<td>729</td>
<td>918</td>
<td>1,106</td>
<td>1,294</td>
</tr>
<tr>
<td>7</td>
<td>275</td>
<td>422</td>
<td>568</td>
<td>715</td>
<td>862</td>
<td>1,008</td>
</tr>
<tr>
<td>8</td>
<td>148</td>
<td>227</td>
<td>306</td>
<td>385</td>
<td>464</td>
<td>543</td>
</tr>
<tr>
<td>Total</td>
<td>776</td>
<td>1,190</td>
<td>1,604</td>
<td>2,017</td>
<td>2,431</td>
<td>2,845</td>
</tr>
</tbody>
</table>

By increasing the subpopulation of students with SLI or SLD achieving proficiency, the overall proficiency rate among students with all disability types across all tested grades will increase by 40.14% from current proficiency levels, thereby reducing the achievement gap between students with disabilities and non-disabled peers.

Table 15: Impact of Growth in SLI or SLD Target Group on the Proficiency Rate of All Students with Disabilities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013–2014</td>
<td>5,155</td>
<td>5,569</td>
<td>5,983</td>
<td>6,396</td>
<td>6,810</td>
<td>7,224</td>
</tr>
<tr>
<td>2014–2015</td>
<td>12.90%</td>
<td>16.10%</td>
<td>17.30%</td>
<td>18.49%</td>
<td>19.69%</td>
<td>20.88%</td>
</tr>
</tbody>
</table>

While the overall process used to articulate Utah’s SiMR and to verify that the SiMR has sufficient capacity to impact outcomes for students with disabilities statewide assumes a consistent annual increase, input from various stakeholders suggests the development of incrementally increased targets. The incrementally increased targets are based on the phased-in implementation of Broad Coherent Improvement Strategies over a five-year period and with various LEAs.

LEA Selection for Participation in the SSIP and SiMR, Evaluation and Plan for Scaling Up

To achieve the improvement goal established in the SiMR, Utah must establish a strong foundation for implementation of Broad Coherent Improvement Strategies. As noted in the infrastructure analysis, some strategies will require significant system change efforts before positive outcomes will be observed. To effectively align Utah’s improvement efforts with existing initiatives, leverage the use of scarce resources, and target interventions to provide the largest change in the shortest time frame, Utah must identify pivotal LEAs for the early stages of implementation. In the selection of initial participant LEAs and schools multiple factors were considered to evaluate implementation readiness, including: PACE, School Grades, UCAS, Title I Priority or Focus School status, UMTSS project participation, RDA tiered monitoring level, the achievement gap between students with disabilities when compared to students without
disabilities, and administrative support. In addition to these readiness factors, current SAGE data were reviewed to identify a subset of LEAs with a large subpopulation of students with SLI or SLD in grades six through eight scoring at the Approaching Proficient level. LEAs were selected from three size categories (large, medium, small), population density (urban, suburban, rural), and from both school district and charter school organizational structures. This approach was selected to test effectiveness across settings, in preparation for scaling up. A subset of nine LEAs were invited for participation in the initial implementation:

Table 16: LEAs Identified as Candidates for Early Implementation of Coherent Improvement Strategies

<table>
<thead>
<tr>
<th>LEAs with the largest number of students in grades 6-8 Approaching Proficient</th>
<th>LEA Size</th>
<th>Total SWD Age 3-12</th>
<th>Total SWD Grade 6-8</th>
<th>Count of Students Grade 6-8 SLI & SLD</th>
<th>Count of 6-8 SLI & SLD Approaching Proficient</th>
<th>Percent of 6-8 SLI & SLD Approaching Proficient</th>
<th>Percent of 6-8 SLI & SLD Proficient</th>
<th>All Grades All Disabilities % Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPINE DISTRICT</td>
<td>Large</td>
<td>5058</td>
<td>1672</td>
<td>1237</td>
<td>325</td>
<td>8.89%</td>
<td>13.11%</td>
<td>21.89%</td>
</tr>
<tr>
<td>DAVIS DISTRICT</td>
<td>Large</td>
<td>5026</td>
<td>1585</td>
<td>905</td>
<td>176</td>
<td>6.43%</td>
<td>9.07%</td>
<td>15.86%</td>
</tr>
<tr>
<td>JORDAN DISTRICT</td>
<td>Large</td>
<td>4092</td>
<td>1293</td>
<td>883</td>
<td>155</td>
<td>5.21%</td>
<td>7.11%</td>
<td>13.80%</td>
</tr>
<tr>
<td>WASHINGTON DISTRICT</td>
<td>Large</td>
<td>2118</td>
<td>751</td>
<td>512</td>
<td>133</td>
<td>7.41%</td>
<td>8.37%</td>
<td>15.05%</td>
</tr>
<tr>
<td>GRANITE DISTRICT</td>
<td>Large</td>
<td>5197</td>
<td>1768</td>
<td>1261</td>
<td>111</td>
<td>3.39%</td>
<td>4.94%</td>
<td>9.52%</td>
</tr>
<tr>
<td>IRON DISTRICT</td>
<td>Medium</td>
<td>739</td>
<td>241</td>
<td>189</td>
<td>47</td>
<td>6.78%</td>
<td>8.47%</td>
<td>13.96%</td>
</tr>
<tr>
<td>WASATCH DISTRICT</td>
<td>Medium</td>
<td>477</td>
<td>155</td>
<td>100</td>
<td>21</td>
<td>6.85%</td>
<td>11.64%</td>
<td>16.91%</td>
</tr>
<tr>
<td>QUEST ACADEMY</td>
<td>Small</td>
<td>84</td>
<td>36</td>
<td>22</td>
<td>9</td>
<td>25.00%</td>
<td>2.78%</td>
<td>6.49%</td>
</tr>
<tr>
<td>SPECTRUM ACADEMY</td>
<td>Small</td>
<td>203</td>
<td>75</td>
<td>12</td>
<td>9</td>
<td>14.52%</td>
<td>19.35%</td>
<td>23.01%</td>
</tr>
<tr>
<td>TOTALS</td>
<td>N/A</td>
<td>22994</td>
<td>7576</td>
<td>5121</td>
<td>986</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

SiMR Baseline Data and Targets

Considering only the subset of nine LEAs identified for initial implementation of the SiMR, to reduce the gap between students with SLI or SLD who are proficient and students without disabilities who are proficient, participating LEAs must improve SAGE assessment results by 41.38% over the next five years. If the LEAs increased at an even increment each year, the annual increase needed would be 8.28%.

Table 17: Proficiency of Students with SLI or SLD in Early Implementation LEAs

<table>
<thead>
<tr>
<th>Group</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proficient Students with SLI or SLD Grades 6–8</td>
<td>8.62%</td>
</tr>
<tr>
<td>Non-Proficient Students with SLI or SLD Grades 6–8</td>
<td>91.38%</td>
</tr>
<tr>
<td>Achievement Gap</td>
<td>82.76%</td>
</tr>
<tr>
<td>50% of Gap</td>
<td>41.38%</td>
</tr>
<tr>
<td>Average Annual Increase</td>
<td>8.28%</td>
</tr>
</tbody>
</table>

For LEAs participating in the initial implementation of Utah’s Broad Coherent Improvement Strategies, annual targets were established with the understanding that steadily increasing the number of students expected to attain proficiency will allow all stakeholder groups the
opportunity to design an action plan that will be effective in applying the detailed, specific improvement activities developed in Phase II of the SSIP across all Utah schools.

Table 18: Scaled Increase in Proficiency Needed in Early Implementation LEAs to Achieve SiMR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Proficient</td>
<td>630</td>
<td>780</td>
<td>1,080</td>
<td>1,580</td>
<td>2,230</td>
<td>3,026</td>
</tr>
<tr>
<td>% Proficient</td>
<td>8.62%</td>
<td>10.67%</td>
<td>14.77%</td>
<td>21.61%</td>
<td>30.50%</td>
<td>41.39%</td>
</tr>
<tr>
<td>Increase</td>
<td>N/A</td>
<td>150</td>
<td>300</td>
<td>500</td>
<td>650</td>
<td>796</td>
</tr>
</tbody>
</table>

To support selected LEAs in quick and efficient implementation of the Broad Coherent Improvement Strategies, Utah has identified key data about student achievement within the subset of students with SLI or SLD in grades six through eight who scored Approaching Proficient on the 2013–2014 SAGE Mathematics assessment. For example, 61.98% of students in grades six through eight who scored at the Approaching Proficient level scored proficient on at least one subtest.

Figure 20: Percent of Students with SLI or SLD Approaching Proficient Overall and Proficient on at Least One Subtest

Among students in grades six through eight in these LEAs, 107 students achieved an overall score of Approaching Proficient, but achieved a score of Proficient or Highly Proficient on every subtest, and 303 students achieved a score of Proficient or Highly Proficient on at least one subtest. 78% of students scoring at the Approaching Proficient level are spending at least 80%
of the day in general education settings. This confirms the State’s conclusion that success in achieving the SiMR requires intensive coordination with multiple educational programs at the state, LEA, and school level.

Figure 21: Students with SLI or SLD in Early Implementation LEAs Approaching Proficient by Access to General Education Setting

To facilitate early adoption of Broad Coherent Improvement Strategies and successful integration of existing improvement initiatives, Utah has prepared detailed student- and school-level information. In selecting LEAs for early participation, USOE considered a variety of factors including School Grades, UCAS, Priority or Focus School status, UMTSS project participation, RDA tiered monitoring level, and administrative support. LEAs selected will review these same readiness factors among their schools. Further, LEAs will be asked to consider 2013–2014 SAGE data to identify schools with a large number of students with SLI or SLD in grades six through eight scoring at the Approaching Proficient level. USOE will work collaboratively with LEA administration to identify the best methods for implementation that can then be applied in other areas of the state. LEAs will be asked to identify a subset of schools and students who will be targeted for participation in the Improvement Strategies. As an example of the type of data review USOE will hold in collaboration with LEAs, Alpine School District, the largest in the state, has eight schools each with more than ten students achieving at the Approaching Proficient level. To determine which of these eight schools will be best suited for implementation of Broad Coherent Improvement Strategies, the USOE and LEA administration must collaboratively consider all available readiness data regarding these schools prior to the implementation of any improvement activities.
Table 19: Sample Data Used to Identify School Readiness for Coherent Improvement Strategies

<table>
<thead>
<tr>
<th>LEA</th>
<th>School</th>
<th># Approaching Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPINE</td>
<td>FRONTIER MIDDLE SCHOOL</td>
<td>27</td>
</tr>
<tr>
<td>ALPINE</td>
<td>AMERICAN FORK JR HIGH</td>
<td>26</td>
</tr>
<tr>
<td>ALPINE</td>
<td>PLEASANT GROVE JR HIGH</td>
<td>23</td>
</tr>
<tr>
<td>ALPINE</td>
<td>LEHI JR HIGH</td>
<td>18</td>
</tr>
<tr>
<td>ALPINE</td>
<td>LAKERIDGE JR HIGH</td>
<td>16</td>
</tr>
<tr>
<td>ALPINE</td>
<td>WILLOWCREEK MIDDLE</td>
<td>14</td>
</tr>
<tr>
<td>ALPINE</td>
<td>MOUNTAIN RIDGE JR HIGH</td>
<td>12</td>
</tr>
<tr>
<td>ALPINE</td>
<td>OAK CANYON JR HIGH</td>
<td>11</td>
</tr>
</tbody>
</table>

In the next section, Utah’s process for selection of Broad Coherent Improvement Strategies is described. The selection, based on stakeholder input and in response to identified root causes, will build capacity of current state infrastructure to support improvement and build capacity at the local level in relation to the SiMR area.

Alignment of SiMR with Utah’s Accountability System and SPP/APR

In alignment with the ESEA Flexibility Waiver, School Grades, and the PACE Report, the SiMR is designed to reduce the gap between the percentage of students with disabilities who are proficient and the statewide percentage of students who are proficient. The SiMR is narrowly focused on students with SLI or SLD in grades six through eight. Targets for improvement are increased annually to reflect the time required for implementation of the state’s Broad Coherent Improvement Strategies. In addition, Utah’s SiMR aligns with Indicator 3C of the SPP/APR and will improve those results as well.

SiMR Alignment with Data Analysis, Infrastructure Analysis, Improvement Strategies, and Theory of Action

Utah’s SiMR directly addresses an area of needed improvement for Utah students with disabilities, based on a thorough and complete broad and in-depth state data analysis and will impact students outside of the SiMR targeted subpopulation. It leverages existing infrastructure strengths, and as identified infrastructure gaps are remedied across state systems, those improvements will also be leveraged for further impact. Further, the SiMR was selected with broad stakeholder consensus, demonstrating current and future public commitment to the initiative.

Summary of SiMR, Aligned with State Systems, Infrastructure Analysis, Data Analysis, and Stakeholder Input

Utah’s SiMR directly addresses concerns identified during quantitative and qualitative data analysis and stakeholder input regarding the math proficiency of all Utah students, especially in grades six through eight, while leveraging the strengths of current SEA and LEA initiatives and priorities to build LEA capacity for improvement, while at the same time decreasing the impact of infrastructure gaps. This will be accomplished through the implementation of the Utah SSIP,
based on a Theory of Action that addresses all supports and needs, while providing LEAs with effective Broad Coherent Improvement strategies.

As part of the ongoing plans to continue engaging stakeholders around improvement efforts, the draft SSIP report was provided electronically to over 100 stakeholders for review, prior to completion and submission. This provided the USOE with an additional opportunity to review and revise the report.

In the next section, Utah’s Broad Coherent Improvement Strategies are described. The Improvement Strategies were designed with stakeholder involvement and engagement, and will assist Utah in making long term change on student achievement that is transformative, persistent, and sustainable.

Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA Appreciation for Assistance with SiMR Selection

Stakeholders were included during the entire SSIP process, including a review of the SEA infrastructure, as they either pay for, provide, receive, participate in, or collaborate on IDEA services and issues, and/or provide expertise in the State-identified Measurable Result (SiMR) on improving mathematics performance of students with disabilities in the sixth through eighth grades, and represent a comprehensive viewpoint of the needs of Utah students with disabilities. Utah’s stakeholders are vital to the success of Utah’s SiMR, and their efforts are valued and integral to the SSIP Phase I, as is their ongoing commitment to continue work towards improving outcomes for students with disabilities during Phase II.
Selection of Broad Coherent Improvement Strategies

Stakeholder Involvement and Engagement in Selection of Improvement Strategies

Utah stakeholders were involved in each step of the Phase I SSIP, including the selection of Broad Coherent Improvement Strategies. Those specifically involved in this step are italicized below.

Table 20: Stakeholder Involvement throughout Selection of Broad Coherent Improvement Strategies

<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>January – April 2015 (Broad and In-depth)</td>
<td>• Summary of data analysis listed above • Stakeholder input • LEA school- and teacher-level placement/LRE data analysis • Criticality Index and personnel • Comparison of math proficiency of students with disabilities to general education peers analysis (i.e., gen ed assessment data) • LEA-specific data analysis on SiMR area to select LEAs and schools for SSIP • Schools selected under ESEA Flexibility Waiver • Quality standards, governance, and PD/TA data • Research on effective interventions for mathematics • Finalize Theory of Action • Broad Coherent Improvement Strategy selection • Refining and finalizing SiMR and targets</td>
<td>• In-person meetings • Webinars • Phone calls • Emailed information and presentations</td>
<td>• USBE • USCSB • USOE Leadership • USOE Staff</td>
<td>• CCPD • Community Members • General Ed Teachers • IHEs • LCPD • LEA Sped Directors • NCSI • OSEP • Other LEA Staff • Other SEA Staff • P&A • Paraeducators • PTA • PTI • School Administrators • Special Education Teachers • TAESE • UPDN Advisory Board • USEAP</td>
</tr>
</tbody>
</table>
As outlined by state data and the infrastructure analysis, the USOE has determined that to improve achievement in mathematics, the SEA and LEAs must focus efforts on the three impactful primary considerations/root causes for the lack of mathematics achievement identified by stakeholders.

1. Administrator, teacher, parent, and student attitudes and behavior (resulting in some IEP team decisions that limit grade-appropriate Core mathematics instruction);
2. Teacher understanding of mathematics standards and effective instruction; and
3. An educational system that decreases general education instructional support and interventions in the secondary settings, during a time when the mathematics core standards become more rigorous and abstract.

Utah’s stakeholders and the research presented earlier to validate stakeholders’ insight determined that to improve mathematics achievement, Utah must turn each of those three root causes into a Broad Coherent Improvement Strategy.
Administrators, teachers, parents, and students will understand the utility of and expect students with disabilities to master mathematics content (resulting in IEP team decisions that require and scaffold grade-appropriate Core mathematics instruction);

4. General education and special education teacher understanding of mathematics standards and effective instruction will improve; and
5. The state and local educational agencies will increase general education instructional support and interventions in the secondary settings, to scaffold mathematics Core standards as they become more rigorous and abstract.

A focus on implementing High Expectations and Beliefs, Content Knowledge and Effective Instruction, and Multi-Tiered System of Supports in Secondary Settings, will result in achievement of the SiMR. For each of these three Broad Coherent Improvement Strategies, Utah recognizes the need to address gaps from the Data Analysis and Infrastructure Analysis. One of each of the identified gaps applies specifically to one of the Improvement Strategies, but all of the other gaps apply to all three of the Improvement Strategies. The relationship of the gaps to the Improvement Strategies can be visually represented in the following chart.
Broad Coherent Improvement Strategy 1: High Expectations and Beliefs

Administrators, teachers, parents, and students will understand the utility of and expect students with disabilities to master mathematics content (resulting in IEP team decisions that require and scaffold grade-level Core mathematics instruction).

“Programs have associated values that must be supported by and compatible with relevant school policies, practices, and goals if they are to succeed. Buy-in from constituencies at different organizational levels, including parents and the community, must be ascertained and their commitment established. School leadership and high-status individuals need to be involved early in the implementation process, and ultimately, ownership needs to be created among all constituencies” (Zins & Elias, 2006, p. 8). “The importance of family/community support cannot be emphasized enough. In attempting to engage struggling learners, it is critical for students to have a sense of belonging and accomplishment and to have relationships with adults, peers, and parents that support learning” (National Association of State Directors of Special Education [NASDSE]; National Disability Rights Network [NDRN], 2007, Step 3, p. 4).

When stakeholders have a shared vision, teachers’ and students’ attitudes and beliefs can begin to support improved student outcomes. “Teachers’ beliefs influence the decisions that they make about the manner in which they teach mathematics . . . students’ beliefs influence their perception of what it means to learn mathematics and their dispositions towards the subject” (National Council of Teachers of Mathematics [NCTM], 2014, pp. 10–11). The reverse is also true, as teachers’ content knowledge improves, their attitudes about their ability to deliver challenging content also improves. “Moreover, the increase in teachers’ opinion of their readiness to deliver challenging mathematics content should be good news in light of repeated concerns over teacher mathematics content knowledge. While a change in attitude is not the same as a change in behavior, it may be taken as a promising early indicator of favorable change in teachers’ content knowledge” (Smithson & Blank, 2006, p. 15).

Beliefs about learning can then translate into the teachers’ presentation of more rigorous content. “An effective teacher provides students with appropriate challenge, encourages perseverance in solving problems, and supports productive struggle in learning mathematics” (NCTM, 2014, p. 11). As a result of the expectation to master challenging content, students will develop beliefs and attitudes that foster a growth mindset. “The fixed mindset appears to be more prevalent in mathematics than in other subject areas” (Dweck, 2008). “Mindsets, however, can be changed when students realize that they are in control of how they approach and view their own abilities to learn (Blackwell, Trzesniewski, and Dweck, 2007)” (NCTM, 2014, p. 50). As students begin to experience success and employ learning strategies, they will be willing to take risks and persevere when presented with tasks that require higher levels of cognitive demand.

“Students can learn mathematics through exploring and solving contextual and mathematical problems” (NCTM, 2014, p. 11). Further, “situating learning goals within the mathematical landscape supports opportunities to build explicit connections so that
students see how ideas build on and relate to one another and come to view mathematics as a coherent and connected discipline” (Fosnot and Jacob 2010; Ma 2010) (NCTM, 2014, p. 13).

Inclusion in Grade-Level Core, Assessment, Graduation Requirements, and College and Career Ready (CCR) Plans

All stakeholders will agree/expect that:

- What we focus on is what improves.
- Students with disabilities are general education students first and students with disabilities second.
- Up to 86% of students with disabilities have mild/moderate disabilities and thus decisions about students with disabilities’ access and progress in mathematics grade-appropriate courses should not be based on the small number of students with significant disabilities (see p. 32 above).
- Students’ post-school outcomes are affected by their enrollment in grade-appropriate mathematics courses and mastery of grade-appropriate mathematics concepts.
- All students can master grade-appropriate mathematics standards.
- Their participation plays a role in helping students with disabilities master grade-appropriate mathematics content.

Students with disabilities will have a mindset that they are capable of mastering mathematics content. They will expect to enroll in grade-appropriate courses and advocate for effective Core instruction and the individual supports and services necessary for each one to master grade-appropriate standards.

Educators, parents, and students with disabilities will agree that regardless of whether a student’s disability is mild, moderate, or severe, all students need to access and master grade-level mathematics content in order to be college and career ready.

Educators and parents will expect students with disabilities to enroll in grade-appropriate courses and take the aligned grade-appropriate assessments. Further, they will not use the IEP process to allow substitutions for mathematics courses that are not the same rigor and content as those required for graduation.

School counselors, parents, and students with disabilities will write CCR plans (as part of IEPs) that expect students to enroll in grade-appropriate mathematics courses leading to grade-appropriate end-of-level tests, and access the necessary supports for success.

Leadership

Policy makers (e.g., Utah Legislature, USBE, and local school boards) will ensure policies address improving mathematics proficiency and on students’ ability to successfully finish four years of grade-appropriate mathematics courses, so students with disabilities are prepared to enter Utah IHEs requiring no mathematics remediation.
PTA members and PTI staff will reinforce with parents that students with disabilities can master grade-appropriate mathematics content, regardless of the severity of the students’ disabilities, and need to do so in order to be college and career ready.

LEA staff, school principals, and teacher leaders will require that students with disabilities have access to grade-level universal Core content and evidenced-based instructional strategies as well as any required additional services and support.

Preservice and Inservice Professional Learning

The SEA and Utah IHEs will work together, in partnership with CEEDAR, to ensure all IHE instructors and preservice educators agree that with appropriate evidence-based instruction and any necessary supplemental instruction/intervention, all students can successfully master grade-appropriate mathematics content.

IHE coursework will prepare preservice teachers and administrators to believe that students with disabilities can master mathematics standards and will prepare both general education and special education teachers to believe they can deliver the instruction required for students with disabilities to access and master Core grade-level standards. IHE coursework will refrain from using deficit language that could lead an educator to have a fixed mindset that students with disabilities are incapable of mastering mathematics content.

IHE coursework will prepare preservice school counselors and school psychologists to reject the mindset that a cognitive score instead of effective instruction is the factor that determines a student’s ability to master mathematics content.

Similarly, evidence-based inservice professional learning, including the work of the UPDN and PLS, will instill in all administrators, educators, related services providers, and paraprofessionals that students with disabilities, regardless of the severity of the disability, can master mathematics standards and that general education and special education teachers are prepared to deliver, and related services providers are prepared to support, the instruction required for students with disabilities to access and master grade-level Utah Core Standards.

Data and Evidence-Based Practices and Decisions

SEA, LEAs, and school staff will collect and analyze data about the attitudes and beliefs that administrators, teachers, parents, and students have about the ability of students with disabilities to master grade-level Core mathematics content in addition to gathering, analyzing, and making instructional decisions based on mathematics achievement data.

SEA staff will continue to provide data drill meetings to help LEA staff understand their LEA data, including mathematics course enrollment, proficiency data, and disability demographics information so LEA can make data-based decisions about program improvement.

LEA and school staff will collect and analyze data about the mathematics courses students with disabilities enroll in and pass,instructionally relevant assessments, including SAGE proficiency scores, and all other available LEA- and school-level mathematics data so LEA and school staff can make data-based decisions about program and course improvement.
Active Engagement of All School Personnel

Administrators, general and special education staff at the SEA, LEA, and school levels will engage in the work of improving mathematics content mastery together. All staff will agree that for students with disabilities to improve mathematics achievement, universal Core instruction will improve for all students. Further, all staff will agree that students with disabilities are general education students first and students with disabilities second.

School counselors will recognize that the organization of the master schedule will allow students with disabilities to enroll in grade-appropriate mathematics courses while still being able to enroll in supplemental courses and/or access support and interventions when needed and appropriate. School counselors will meet with all students, including students with disabilities, to form a plan for course selection, college and career readiness preparation, college and career readiness benchmark discussions, and pathway selection.

SLPs will recognize that they can contribute to improving achievement by providing effective evidence-based instruction which includes teaching students with disabilities mathematics vocabulary and linguistic concepts.

IEP Team Decisions

IEP team members (LEA/school staff, parents, and students) will believe that each student with a disability, regardless of the severity of the disability, can master grade-level mathematics content and write IEP goals that reflect that belief. IEP teams will agree to require students with disabilities to enroll in grade-appropriate mathematics courses and recognize it is their responsibility to determine the supports the students will need in order to be successful in those courses.

LEAs will analyze their LRE data (Indicator 5) and determine LEA program improvement goals based on the earlier identified trend for students in Utah to be placed in more restrictive settings the older they get (see p. 30).

LEAs will internally monitor their special education files to ensure all staff appropriately apply federal and state compliance requirements and correct any identified noncompliance on the student and the system levels as soon as possible and in no case longer than one year from identification, according to the OSEP Memo 09-02.

Fiscal Support

Policy makers (e.g., Utah Legislature, USBE, and local school boards) will believe that giving educators the tools needed to provide appropriate instruction will improve achievement. Further, policy makers will agree they need to provide additional funding to schools to support and coach educators in the process of improving mathematics instruction to all students, including students with disabilities.

SEA special education staff will allocate state-level activity funds in expectation and support of helping special educators improve mathematics content knowledge and evidence-based pedagogy, interventions, services, and supports.
LEA and school staff will allocate funds and resources in accordance with their belief that all students, including students with disabilities, can enroll and be successful in grade-appropriate courses when given high quality Core instruction, and any needed interventions, services, and/or supports.

Broad Coherent Improvement Strategy 2: Content Knowledge and Effective Instruction

General education and special education teacher understanding of mathematics standards and effective instruction will improve.

“Research on the relationship between teachers’ mathematical knowledge and student achievement supports the importance of teachers’ content knowledge in student learning” (National Mathematics Advisory Panel [NMAP], 2008, p. xxi). “The extant evidence does suggest teachers’ knowledge of mathematics content is a contributor to instructional quality and student achievement (National Mathematics Advisory Panel, 2008; Wilson, Floden, & Ferrini-Mundy, 2001)” (McGraner, VanDerHeyden, & Holdheide, 2011, p. 5). In order for teachers to improve their content knowledge and apply evidence-based principles of effective instruction, they will require professional learning and supports. “Professional development will be required to support teachers to use a variety of teaching strategies that accommodate individual needs and differences. Teachers may be called upon to teach prerequisite knowledge and skills in order to enhance learning academic content and address academic and nonacademic barriers that may be interfering with student learning and performance” (NASDSE, NDRN, 2007, Step 3, p. 4). When surveyed by the USOE about Utah’s implementation of the mathematics Core standards, 70% of Utah teachers stated they needed more time to work with peers developing common lessons and assessments; 69% stated they needed time to develop instructional sequences (lesson plans); 55% stated they needed more help with instructional strategies, including interventions; 21% stated they needed a better understanding of the mathematics trajectories; and 14% stated they needed more depth of knowledge about mathematics.

Improving teachers’ knowledge of Core standards will enable them to provide high quality universal instruction. “Math instruction includes instruction in arithmetic skills, problem solving, conceptual knowledge, and reasoning ability while also addressing the contributing functions of application, procedural fluency, number sense and visual-spatial, temporal and language processing (Colorado Department of Education, 2005). If 70% or more of the students are achieving below proficiency on summative assessments, the core instructional program needs to be improved before focusing on a system of intervention” (NASDSE, NDRN, 2007, Step 3, p. 22). “Students will perform better on tests that cover content covered in classroom instruction than on tests that cover content that has not been covered during classroom instruction. Naturally other factors will play a role in student achievement, but everything else being equal, alignment of content coverage (the enacted curriculum) to assessed content will be an important factor in predicting student achievement” (Smithson & Blank, 2006, p. 18).

Once teachers are providing highly effective Core instruction, they will be able to identify students who are in need of more targeted instruction. “Equity does not mean
that every student should receive identical instruction; instead, it demands that reasonable and appropriate accommodations be made as needed to promote access and attainment for all students (NCTM 2000, p.12)” (NCTM, 2014, p. 59). “Researchers have consistently found that . . . students who have struggled to learn mathematics, are more likely to have teachers who have weaker mathematics backgrounds, less professional experience, and certification outside of rather than in mathematics, and who are perceived to be less effective” (Battey 2013; Darling-Hammond 2007; Flores 2007; Stiff, Johnson, and Akos 2011). “Moreover, in instruction for these students, [effective mathematics teaching practices] are rarely implemented consistently to support meaningful learning. Instead, lessons commonly focus primarily on rote skills and procedures, with scant attention to meaningful mathematics learning (Ellis 2008; Ellis and Berry 2005)” (NCTM, 2014, p. 61).

Math Content and Pedagogy to Provide Effective Instruction through UDL and Evidence-Based Interventions

Educators will be properly licensed and endorsed, including having passed the appropriate PRAXIS Series® tests, to teach to the grade-appropriate mathematics Core standards of all assigned students.

Educators will deliver high quality universal instruction aligned with grade-appropriate Core standards to all students, using the Utah Effective Educator Standards as their guide. General and special educators will use UDL principles and other evidence-based pedagogy practices to provide universal, Core instruction. Special educators will supplement Core instruction with high-quality, evidence-based supports and interventions (see p. 18).

Leadership

SEA staff, LEA staff, school principals, and teacher leaders will require that all teachers of record are properly licensed and endorsed to teach the grade-appropriate mathematics content using UDL principles and evidence-based practices. Then, professional learning will be used to strengthen content knowledge and evidence-based pedagogy, including the use of principles of UDL and co-teaching, in addition to providing the materials and equipment needed to instruct students with disabilities in inclusive settings.

SEA staff, LEA staff, school principals, and teacher leaders will provide high-quality coaching to new and struggling educators to improve instructional skills.

PTA members and PTI staff will reinforce with parents that students with disabilities require access to grade-level universal Core content and evidenced-based instructional strategies as well as any required additional services and supports, regardless of the severity of the students’ disabilities, in order to be college and career ready.

LEA staff, school principals, and teacher leaders will organize the school schedule so educators have time to work in teams sharing instructional successes and problem solving for how to improve instruction and achievement. This time will include an opportunity for general and special education teachers to collaborate about how to improve the access students with disabilities have to inclusive settings, grade-level content, and specialized instruction.
School principals, teacher leaders, and/or related service providers will facilitate student focus/student problem solving teams, to discuss the achievement of struggling students and determine the supports and interventions needed to catch them up with their grade/course-appropriate peers.

Preservice and Inservice Professional Learning

Utah will increase the number of educators who are properly licensed and endorsed to deliver evidence-based instruction in grade-appropriate mathematics content to all students, including supplemental instruction/interventions to struggling learners and specialized instruction to students with disabilities.

The SEA and Utah IHEs will work together, in partnership with CEEDAR, to ensure all Utah IHE preservice general education and special education programs focus sufficient coursework on content and pedagogy, including evidence-based strategies for mathematics instruction to prepare teachers to be successful Core instructors as well as the providers of supplementation instruction/interventions.

Similarly, evidence-based inservice professional learning, including the work on UPDN and online modules available through resources such as the IRIS Center, will strengthen general and special educators’ mathematics content knowledge and pedagogy, including skill in co-teaching, using principles of UDL and other evidence-based practices. Educators will be prepared to instruct students with disabilities in the LRE, including inclusive settings, regardless of the severity of the students’ disabilities.

Evidence-based inservice professional learning will enable related service providers and paraprofessionals to understand their role in providing and/or supporting evidence-based, effective mathematics instruction.

Professional learning providers will apply the principles of evidence-based professional development, including the selection of evidence-based practices, evidence-based delivery, ongoing coaching and technical assistance, and the evaluation of fidelity and outcomes, and will analyze SAGE and other mathematics assessment results to provide teachers with knowledge about how to fill-in the gaps that students demonstrated.

Data and Evidence-Based Practices and Decisions

SEA staff will analyze SAGE data regarding the mathematics achievement of all students and of students with disabilities. SEA staff will make decisions about the supports (evidence-based professional learning and technical assistance) they will provide to LEAs’ staff based on the data analysis. SEA staff will provide this support to LEAs based on their level of need. The nine LEAs identified as having the students whose movement from non-proficient to proficient will achieve Utah’s SiMR will initially receive the most intensive supports. All other LEAs will initially receive universal support. Then, during each successive year of SSIP implementation, new LEAs will added to the group receiving more intensive supports, until all are included.

SEA staff will continue to provide data drill meetings to help LEA staff understand and make decisions based on their LEA data, including mathematics course enrollment, proficiency data, and disability demographics information, so LEAs can make databased decisions about teacher
content knowledge, the effectiveness of universal Core instruction, the application of supplemental instruction and interventions, and general program improvement.

LEA staff will analyze instructionally relevant assessments, including SAGE mathematics data, any LEA-administered mathematics assessment data, school grading data, and teacher evaluation data regarding the mathematics achievement of all students and of students with disabilities and the effectiveness of teachers. LEA staff will make decisions about the supports (professional learning and technical assistance) they will provide to individual schools’ staff based on the data analysis, including the incorporation of the six signposts (Hattie, 2009, pp. 238-239) outlined on p. 20 of this document.

School staff will analyze instructionally-relevant assessments including SAGE mathematics data, any LEA- and/or school-administered mathematics assessment data, and teacher evaluation data regarding the achievement of all students and of students with disabilities and the effectiveness of teachers. School staff will make decisions about the supports (professional learning and technical assistance) they will provide to individual teachers and related service providers and paraprofessionals based on the data analysis.

School staff will work in teams to analyze the mathematics achievement of individual students, including SAGE data, LEA and school-wide assessment data, and progress monitoring data, for early identification of struggling students and to determine any interventions and supports needed to assist these students in learning grade-level math content.

Active Engagement of All School Personnel

Administrators, educators, related service providers, and paraprofessionals will collaborate to provide highly effective, evidence-based universal Core instruction based on grade-level standards, analyze all available achievement data, and provide evidence-based interventions to struggling students. This active engagement will follow the format outlined in the chart on p. 19 of this document and will enable all of the stakeholders to continue movement along the collaboration continuum.

IEP Team Decisions

IEP teams will ensure students are educated in the LRE, and that placement decisions begin with consideration of placement in the general education classroom. IEP teams will ensure that students have access to the general education curriculum and will consider how students’ disabilities impact the students’ progress and involvement in the general education curriculum. IEP teams will monitor students’ response to specialized instruction as well as their progress on annual IEP goals.

LEAs will internally monitor their special education files to ensure all staff appropriately apply federal and state compliance requirements and correct any identified noncompliance on the student and the system levels as soon as possible and in no case later than one year from identification, according to the OSEP Memo 09-02.

Fiscal Support

Policy makers (e.g. Utah Legislature, USBE, and local school boards) will provide IHEs, the SEA, LEAs, schools, and educators with additional funding to provide high-quality preservice training,
inservice professional learning, instructional coaching and the resources, equipment, and materials educators need to deliver high quality universal Core mathematics instruction to all students, appropriate interventions to struggling students and appropriate services and supports to students with disabilities.

SEA special education staff will allocate state-level activity funds according to a plan to help special educators improve mathematics content knowledge and pedagogy, including evidence-based instructional strategies, interventions, services, and supports.

LEA and school staff will allocate funds and resources to support general and special educators to improve mathematics content knowledge and pedagogy, including evidence-based instructional strategies, interventions, services and supports.

Broad Coherent Improvement Strategy 3: Multi-Tiered System of Supports (MTSS) in Secondary Settings

The state and local educational agencies will increase general education instructional support and interventions in secondary settings, to scaffold mathematics Core standards as they become more rigorous and abstract.

“Much has been written regarding the state of secondary schools and the need for effective teaching of reading and math. Secondary schools can address the issue of poor achievement in reading and math by taking a systems approach that integrates effective leadership, management, infrastructure, instruction, behavior and discipline, assessment, and transition services to provide a continuum of high quality, effective instruction to all students. This continuum includes targeted interventions for students who do not progress adequately given high quality, effective instruction” (NASDSE, NDRN, 2007, Step 3, p. 21). When superintendents were surveyed about how to improve achievement at the secondary school level, “qualitative data yielded three major findings: (1) districts must develop the MTSS framework and promote a common language based on this framework, (2) a district-wide culture of collaboration must exist, and (3) capacity of individuals and learning communities must be built at every system level so improvement is ongoing and sustainable” (Dulaney, Hallam, & Wall, 2013, p. 37).

Once the infrastructure to support implementation of an MTSS is in place, “the resources to provide these interventions must be available. At the building level, teams will decide how best to allocate space, time, and personnel to provide quality interventions, as well as how to support the seamless movement of students through various levels of intervention. Regular reevaluation of decisions, reformulation of plans, and renegotiation of agreements based on mutual evaluations of progress, problems, and learners’ perceptions of how well instruction matches their interests and capabilities is ongoing” (NASDSE, NDRN, 2007, Step 3, p. 4). When the resources are readily available and team problem solving of students’ achievement is simultaneously occurring, students struggling with rigorous and abstract content are able to access the services and supports necessary to master that content. “When a student receives services at the targeted tier of intervention, the goal is to accelerate student learning to
close the achievement gap so the student can function within the universal, core group. Ideally, the goal is for the student to function as an independent learner without secondary tier supports” (NASDSE, NDRN, 2007, Step 3, p. 2).

Though the goal is for students to function without secondary supports, having an MTSS provides students who continue to need those supports with opportunities to receive evidence-based, highly-effective interventions in addition to Core instruction. “It’s important for schools to focus on intensive interventions because it gives an opportunity for the schools to figure out ways to serve their neediest students. . . . The idea is really that if you have your core program . . . then for those students for whom that is not enough, sufficient, you want to provide something supplemental. . . . So an intensive intervention is really viewed as an intervention that is the most specific for the students most in need. . . . So that means a willingness to make modifications, a willingness to make adaptations, and a willingness to reflect on evidence-based decision making so that the kind of intensive intervention you provide is really specific to that student” (National Center on Intensive Intervention, 2014, April). This entire process is outlined on the chart on p. 18 of this document.

Infrastructure, Scale, and Fidelity

SEA staff in all instructional departments (i.e., special education; teaching and learning; career, adult and technical education; federal programs; and charter schools) will create a collaborative plan to provide LEAs with the professional learning opportunities and technical assistance needed to develop infrastructure for an MTSS, implement an MTSS, analyze the fidelity of the MTSS and the instructional interventions it provides, and then how to scale up the MTSS. The plan will be based on principles of implementation science and LEAs will receive SEA supports based on their stage of implementation and level of need.

LEAs will analyze their infrastructures, and their MTSS frameworks, if they already have them, to determine where they are in the stages of implementation. They will create plans to move from their current stages of implementation through to full implementation.

Schools will analyze their infrastructures, and their MTSS frameworks, if they already have them, to determine where they are in the stages of implementation. They will create plans to move from their current stages of implementation through to full implementation. Schools will design and implement fidelity checks to ensure that the system and interventions are being implemented with fidelity.

Leadership

SEA staff will model an MTSS by providing LEAs with professional learning and technical assistance based on each LEA’s state of implementation and need. SEA staff will provide systems coaching to LEAs requesting/requiring intensive support to develop the infrastructure for an MTSS and/or scale up an MTSS.

SEA and LEA staff will understand the components of evidenced-based professional development, including the selection of evidence-based practices, evidence-based delivery,
ongoing coaching and technical assistance, and the evaluation of fidelity and outcomes so all professional learning opportunities they provide to LEA and school staff will be successful.

Utah’s PTI staff will reinforce with parents that students with disabilities require access to grade-level universal Core content and evidenced-based instructional strategies as well as any required additional services and supports, regardless of the severity of the students’ disabilities, in order to be college and career ready.

LEA staff will model an MTSS by providing schools with evidenced-based professional learning and technical assistance based on each school’s state of implementation and need. LEA staff will provide systems and instructional coaching to schools requesting/requiring intensive support to develop the infrastructure for an MTSS and/or scale up an MTSS and/or to improve the universal Core instruction and interventions provided to students.

LEA staff, school principals, school counselors, and teacher leaders will organize the school schedule, including secondary school schedules, so that intervention times/periods exist during which teachers provide struggling students with mathematics interventions and provide common planning time during the school day to ensure quality collaboration between general education mathematics teachers and special education teachers. The common planning time will be used to plan evidence-based instruction that increases access to grade-level content and specialized instruction for students with disabilities.

School principals, teacher leaders, and/or related service providers will facilitate student focus/student problem solving teams, to discuss the achievement of struggling students and determine the supports and interventions needed to catch them up with their grade-appropriate peers. Schools will design and implement fidelity checks, such as instructional efficacy data collection based on frequent instructional observations, to ensure that the system and interventions are being implemented with fidelity.

Preservice and Inservice Professional Learning

The SEA and Utah IHEs will work together, in partnership with CEEDAR, to ensure all Utah IHE preservice education programs focus sufficient coursework on the components of MTSS and the roles of all educators in implementing an MTSS.

IHE coursework will enable preservice administrators, general and special educators, school psychologists, and school counselors to understand the components of and the role of all educators in an MTSS, the principles of implementation science, and the components of evidence-based professional development including the selection of evidence-based practices, evidence-based delivery, ongoing coaching and technical assistance, and the evaluation of fidelity and outcomes.

Similarly, evidenced-based inservice professional learning, including the work of the UPDN, will strengthen administrators’, general and special educators’, and school psychologists’ and school counselors’ understanding of the components of and the role of all educators in an MTSS and the principles of implementation science. SEA staff will embed MTSS practices into evidenced-based inservice professional learning to ensure implementation of strategies with higher fidelity at the LEA and school levels.
Evidenced-based inservice professional learning will also enable other related service providers to understand the components of and the role of all educators in an MTSS and the principles of implementation science. This type of professional learning will include collaboration between related service providers and educators to align their roles and responsibilities within an MTSS and move them along the collaboration continuum.

Data and Evidence-Based Practices and Decisions

SEA staff will use the SSIP infrastructure analysis and the collaboration continuum to address identified gaps and align the processes, procedures, professional learning opportunities, and technical assistance used and provided by all instruction departments (special education; teaching and learning; CTAE; federal programs; and charter schools.) SEA staff will use LEA infrastructure analysis to make decisions about the supports (professional learning, technical assistance, and system coaching) they will provide to LEAs’ staff based on the data analysis. SEA staff will model an MTSS by using the principles of implementation science and providing this support to LEAs based on their stage of implementation and level of need. The nine LEAs identified as having the students whose movement from non-proficient to proficient will achieve Utah’s SiMR will initially receive the most intensive supports. All other LEAs will initially receive universal supports. Then, during each successive year of SSIP implementation, new LEAs will added to the group receiving more intensive supports, until all are included.

SEA staff will continue to provide data drill meetings to help LEA staff understand their LEA data, including mathematics course enrollment, proficiency data, and disability demographics information so LEAs can make data-based decisions about the implementation of MTSS within the LEA and all LEA schools.

LEA staff will use LEA and school infrastructure analysis, and the LEA’s and schools’ stages of implementation to make decisions about the supports (professional learning, technical assistance, and systems and/or instructional coaching) they will provide to schools’ staff based on the data analysis. LEA staff will model an MTSS by using the principles of implementation science and providing this support to schools based on their stage of implementation and level of need.

School staff will analyze their infrastructure analysis and stage of implementation and will make decisions about the supports (professional learning, technical assistance, and instructional coaching) they will provide to individual teachers and related service providers, and paraprofessionals based on the data analysis.

School staff will work in teams to analyze the mathematics achievement of individual students, including SAGE data, LEA- and school-wide assessment data, and progress monitoring data, to determine any interventions and supports to provide struggling students.

IEP team members (LEA/school staff, parents, and students) will analyze all the available mathematics data for individual students with disabilities, write appropriate goals, and determine the appropriate services and supports and placement necessary for the students’ successful mastery of grade-appropriate content.
Active Engagement of All School Personnel

Administrators, educators, related service providers, and paraprofessionals will collaborate to implement an MTSS with fidelity. This active engagement will enable all of the stakeholders to continue movement along the collaboration continuum.

IEP Team Decisions

IEP team members (LEA/school staff, parents, and students) will analyze all the available mathematics data for individual students with disabilities, write appropriate goals, and determine the appropriate services and supports and placement necessary for the students’ successful mastery of grade-appropriate content.

LEAs will internally monitor their special education files to ensure all staff appropriately apply federal and state compliance requirements and correct any identified noncompliance on the student and the system levels as soon as possible and in no case later than one year from identification, according to the OSEP Memo 09-02.

Fiscal Support

Policy makers (e.g. Utah Legislature, USBE, and local school boards) will provide IHEs, the SEA, LEAs, schools, and educators with additional funding to provide high-quality preservice training, inservice professional learning, systems and instructional coaching, and the resources, equipment, and materials educators need to implement an MTSS with fidelity.

SEA special education staff will allocate state-level activity funds according to a plan to help LEAs’ and schools’ staff implement and/or scale up an UMTSS which will support the improvement of pedagogy, including evidence-based instructional strategies, interventions, services, and supports.

LEA staff and school staff will allocate funds and resources to implement and/or scale up an MTSS which will support the improvement of pedagogy, including evidence-based instructional strategies, interventions, services, and supports.

Summary of Broad Coherent Improvement Strategies Aligned with State Systems, Infrastructure Analysis, and Stakeholder Input

Utah’s three Broad Coherent Improvement Strategies, including High Expectations and Beliefs, Content Knowledge and Effective Instruction, and Multi-Tiered System of Supports in Secondary Settings, directly address the three root cause concerns identified during quantitative and qualitative data analysis and stakeholder input regarding the math proficiency of all Utah students, especially in grades six through eight. Utah agrees with the Center on Great Teachers and Leaders at the American Institutes for Research (see Hayes & Lillenstein, 2015). “Three of the most far-reaching instructional reforms that educators face today include the following: Implementation of college and career readiness standards, such as the Common Core State Standards, Adoption of schoolwide intervention models, such as an MTSS, Reform of educator effectiveness systems to emphasize performance evaluation and drive continuous improvement in the quality of instruction” (Hayes & Lillenstein, 2015). Their Framework for Coherence is visually represented in this way:
Figure 22: Framework for Coherence

Note: Adapted for accessibility from “A Framework for Coherence: College and Career Readiness Standards, Multi-Tiered Systems of Support, and Educator Effectiveness,” by L. Hayes and J. Lillenstein

Utah believes that as we leverage the strengths of current SEA and LEA initiatives, including our current UMTSS initiative and our PEER educator and administrator evaluation initiative, while implementing the three Broad Coherent Improvement Strategies above, Utah will build LEA capacity for improvement, while at the same time decreasing the impact of infrastructure gaps.

Implementing Utah’s Broad Coherent Improvement Strategies will require the continued engagement of all education providers from the SEA to the individual teacher, and then also include the collaboration of parents and students and other stakeholders such as policy makers, who must be partners in this process in order ensure long-term change in student achievement that is transformative, persistent, and sustainable.

This change will be accomplished through the implementation of the Utah SSIP, based on a Theory of Action that addresses all supports and needs, while providing LEAs with effective improvement activities.

As part of the ongoing plans to continue engaging stakeholders around improvement efforts, the draft SSIP report was provided electronically to over 100 stakeholders for review, prior to completion and submission. This provided the USOE with an additional opportunity to review and revise the report.
Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA Appreciation for Assistance with Selection of Broad Coherent Improvement Strategies

Stakeholders were included during the entire SSIP process, including a review of the SEA infrastructure, as they either pay for, provide, receive, participate in, or collaborate on IDEA services and issues, and/or provide expertise in the SiMR on improving mathematics performance of students with disabilities in the sixth through eighth grades, and represent a comprehensive viewpoint of the needs of Utah students with disabilities. Stakeholders collaborated to determine that in order to make long-term, transformative, and sustainable change, Utah must address each of the three root cause concerns that stakeholders identified and research supported, and suggested that we address each root cause as a Broad Coherent Improvement Strategy. Further, stakeholders agreed that their continued collaboration was vital in order for Utah to implement our Broad Coherent Improvement Strategies, including High Expectations and Beliefs; Content Knowledge and Effective Instruction and Multi-Tiered System of Supports in Secondary Settings, in order to achieve our SiMR. Stakeholders are invested in the process of breaking down each of our Broad Coherent Improvement Strategies into specific, detailed improvement activities during Phase II of the SSIP.
Theory of Action

Stakeholder Involvement and Engagement in Design of Theory of Action

Utah’s Theory of Action design started during the OSEP TA visit in October 2014. From that point, other Utah stakeholders participated in refinement of the Theory of Action, as more analysis was completed and more stakeholders provided feedback. Those stakeholders who specifically provided input on the Theory of Action are in italics below.

Table 21: Stakeholder Involvement Throughout the Design of Utah’s Theory of Action

<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
</table>
| September -October 2014 (Broad and In-depth) | • Summary of state 618/EdFacts and SPP/APR Analysis
• LEA 618 data and SPP/APR Analysis
• Summary of LEA 618 data and SPP/APR analysis trends
• Statewide assessment data analysis
• LEA assessment data analysis
• Infrastructure analysis (RRC TA document and initiative inventory)
• Fiscal data analysis
• Monitoring and Dispute Resolution data analysis
• Stakeholder input
• Draft Theory of Action
• Identifying draft SiMR | • In-person meetings and conferences
• Webinars
• Phone calls
• Emailed information and presentations | • USBE
• USCSB
• USOE Leadership
• USOE Staff | • CCPD
• Community Members
• General Ed Teachers
• IHEs
• LCPD
• LEA Sped Directors
• OSEP
• Other LEA Staff
• Other SEA Staff
• P&A
• Paraeducators
• Parents
• PTI
• School Administrators
• Special Education Teachers
• Title I Directors
• UPDN Advisory Board
• USEAP |
| November -December 2014 (Broad and In-depth) | • Summary of data analysis listed above
• Math proficiency data analysis (i.e., subgroup of statewide assessment data)
• Accountability data analysis (e.g., ESEA Waiver, School Grades, PACE Report)
• Stakeholder input
• Refining draft SiMR and Theory of Action | • In-person meetings
• Webinars
• Phone calls
• Emailed information and presentations | • USOE Staff | • CCPD
• IHEs
• LEA Sped Directors
• LEA staff
• P&A
• PTI
• UPDN
• USCSB |
<table>
<thead>
<tr>
<th>Date</th>
<th>Data Identified, Selected, and Analyzed</th>
<th>Type of Involvement</th>
<th>Internal Stakeholders</th>
<th>External Stakeholders</th>
</tr>
</thead>
</table>
| January-April 2015 (Broad and In-depth) | • Summary of data analysis listed above
• Stakeholder input
• LEA school- and teacher-level placement/LRE data analysis
• Criticality Index and personnel
• Comparison of math proficiency of students with disabilities to general education peers analysis (i.e., gen ed assessment data)
• LEA-specific data analysis on SiMR area to select LEAs and schools for SSIP
• Analysis of schools selected under ESEA Flexibility Waiver
• Analysis of quality standards, governance, and PD/TA data
• Analysis of research on effective interventions for mathematics
• Finalize Theory of Action
• Broad Coherent Improvement Strategy selection
• Refining and finalizing SiMR and targets | • In-person meetings and conferences
• Webinars
• Phone calls
• Emailed information and presentations | • USBE
• USCSB
• USOE Leadership
• USOE Staff | • CCPD
• Community Members
• General Ed Teachers
• IHEs
• LCPD
• LEA Sped Directors
• NCSI
• OSEP
• Other LEA staff
• Other SEA staff
• P&A
• Paraprofessionals
• Parents
• PTI
• School Administrators
• Special Education Teachers
• TAESE
• UDN Advisory Board
• USEAP |

Summary of Theory of Action, Aligned with State Systems, Infrastructure Analysis, and Stakeholder Input

Utah’s Theory of Action is a brief but comprehensive representation of our long-term, transformative and sustainable plan to improve mathematics outcomes for students with disabilities. The visual representation of Utah’s Theory of Action is attached on p. 96 below.

Utah’s Theory of Action begins with the identification of the three root cause concerns for the poor achievement of students with disabilities in mathematics in grades six through eight and transforms those concerns into our three Broad Coherent Improvement Strategies, including...
High Expectations and Beliefs; Content Knowledge and Effective Instruction, and Multi-Tiered System of Supports in Secondary Settings.

The Theory of Action then demonstrates how each Broad Coherent Improvement Strategy will leverage the strengths of current SEA and LEA initiatives and priorities to build LEA capacity for improvement, while at the same time decreasing the impact of infrastructure gaps. Next, the Theory of Action clearly articulates Utah SiMR.

The power of Utah’s Theory of Action is that as stakeholders address all identified infrastructure analysis and data analysis gaps through the implementation of Utah’s three Broad Coherent Improvement Activities, the mathematics achievement of not just students with disabilities in grades six through eight, or just students with disabilities, but all students in Utah will improve.

Utah’s Theory of Action will require the continued engagement of all stakeholders as we collaboratively address all supports and needs of LEAs, schools, teachers and students. As part of the ongoing plans to continue engaging stakeholders around improvement efforts, the draft SSIP report was provided electronically to over 100 stakeholders for review, prior to completion and submission. This provided the USOE with an additional opportunity to review and revise the report.

Future Plans for Ongoing Stakeholder Involvement and Engagement in Phases II–III and SEA Appreciation for Assistance with the Theory of Action

Stakeholders were included during the entire SSIP process, including a review of the SEA infrastructure, as they either pay for, provide, receive, participate in, or collaborate on IDEA services and issues, and/or provide expertise in the SiMR on improving mathematics performance of students with disabilities in the sixth through eighth grades, and represent a comprehensive viewpoint of the needs of Utah students with disabilities. Stakeholders collaborated to determine that in order to make long-term, transformative, and sustainable change, Utah must address each of the three root cause concerns that stakeholders identified and research supported, and suggested that we address each root cause as a Broad Coherent Improvement Strategy. In essence, stakeholders determined that if Utah implements our three identified Broad Coherent Improvement Strategies, including High Expectations and Beliefs; Content Knowledge and Effective Instruction and Multi-Tiered System of Supports in Secondary Settings, then, Utah will increase the percentage of students with Speech/Language Impairment (SLI) or Specific Learning Disabilities (SLD) in grades six through eight who are proficient on the SAGE mathematics assessment by 11.11% over a five year period. Stakeholders agree that this SiMR is achievable with their continued investment in collaboration and look forward to identifying specific, detailed improvement activities during Phase II of the SSIP.

The USOE is very grateful for the help and support of the TAESE staff, OSEP staff, the NCSI state contact, LEA staff, and our own SEA staff for contributing to the organization of our Theory of Action. The USOE is particularly grateful to Melanie Smith-Harris for creating the graphic.
Figure 23: Visual Representation of Utah’s Theory of Action

Utah State Systemic Improvement Plan (SSIP)

2015 2019

THEORY OF ACTION

IF

Utah implements broad coherent improvement strategies

THEN

Utah’s State-identified Measureable Result (SiMR)

Utah will increase the percentage of students with Speech/Language Impairment (SLI) or Specific Learning Disabilities (SLD) in grades 6-8 who are proficient on the SAGE mathematics assessment by 11.11% over a five-year period.
Works Cited

Telfer, D. M. (2011). Moving Your numbers: Five districts share how they used *assessments and accountability to increase performance for students with disabilities as part of district-wide improvement*. Minneapolis, MN: National Center on Educational Outcomes.

