Course Description
This course reviews (Strands 1-6) and builds on the concepts introduced in Computer Programming 1. Beginning in Strand 4, and then Strands 7-10, this course introduces students to more complex data structures and their uses, including sequential files, arrays, and classes. Students will learn to create more powerful programs within a specific programming language.

Java, Python, C++, C#, Swift

<table>
<thead>
<tr>
<th>Intended Grade Level</th>
<th>9-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units of Credit</td>
<td>0.5</td>
</tr>
<tr>
<td>Core Code</td>
<td>35.02.00.00.032</td>
</tr>
<tr>
<td>Concurrent Enrollment Core Code</td>
<td></td>
</tr>
<tr>
<td>Prerequisite</td>
<td>Computer Programming 1 Suggested - Digital Literacy, Computer Science Principles, or Teacher Approval</td>
</tr>
<tr>
<td>Skill Certification Test Number</td>
<td>#822, #824, #826, #827, #828, #941, #830</td>
</tr>
<tr>
<td>Test Weight</td>
<td>0.5</td>
</tr>
<tr>
<td>License Type</td>
<td>CTE and/or Secondary Education 6-12</td>
</tr>
<tr>
<td>Required Endorsement(s)</td>
<td>Computer Science Level 1 or</td>
</tr>
<tr>
<td>Endorsement 1</td>
<td>Computer Science Level 2</td>
</tr>
</tbody>
</table>

ADA Compliant: July 2018
STRAND 1

Students will be familiar with and use a programming environment.

Standard 1
Demonstrate knowledge of software concepts.
- Identify software categories e.g. application software, web-based software, mobile application, or operating system.
- Describe the difference between an interpreted language vs a compiled language.

Standard 2
Demonstrate the ability to compile, debug, and execute programs.
- Demonstrate how to use an editor/IDE to compile and run programs.
- Understand the difference between syntax, run-time, and logic errors.
- Demonstrate how to debug programs.

Performance Skills
- Become familiar with and use a programming environment.

STRAND 2

Students will employ accepted programming methodology.

Standard 1
Demonstrate the ability to use good programming style.
- Demonstrate how to use white space properly.
- Employ an appropriate naming convention.
- Construct identifiers with meaningful format (i.e.: camelCase, Underscores, and ALLCAPS).

Standard 2
Understand that software development is a process and use a variety of creation techniques to develop 21st Century Skills. (www.p21.org)
- Understand specifications and requirements for computer programs.
- Break down the problem into sub-components.
- Design solutions using algorithms and other problem solving techniques.
- Write the code for a program.
- Test programs for errors and proper functionality.
- Provide internal and external documentation for a program during development.
- Redo all steps as needed.

Standard 3
Identify the syntactical components of a programming language.
- Identify keywords, identifiers, operators, and operands.
- Identify the entry-point of a program.
• Identify statements and expressions in a program.
• Identify program components such as functions, methods, or procedures.

Performance Skills
• Employ accepted programming methodology.

STRAND 3

Students will properly use language-fundamental commands and operations.

Standard 1
Demonstrate the ability to use basic elements of a specific language.
• Write programs formatted based on the conventions of the utilized language.
• Declare, initialize, and assign values to constants and variables.
• Demonstrate the ability to use input and output commands.
• Communicate clearly with output values stored in identifiers. (www.p21.org)
• Demonstrate the ability to use strings.

Standard 2
Employ basic arithmetic expressions in programs.
• Use basic arithmetic operators (modulus, multiplication, division, addition, subtraction).
• Understand order of operation of expressions.
• Write expressions that mix floating-point and integer expressions.

Standard 3
Demonstrate the ability to use data types in programs.
• Declare and use variable types (primitives, reference, or object).
• Declare and use constants.
• Know the difference between data types and their application (boolean, integer, floating point, strings).

Performance Skills
• Properly use language-fundamental commands and operations.

STRAND 4

Students will properly employ control structures.

Standard 1
Demonstrate the ability to use relational and logical operators in programs.
• Compare values using relational operators.
• Form complex expressions using logical operators.

Standard 2
Demonstrate the ability to use decisions in programs.
• Employ simple IF structures.
• Use IF-ELSE structures.
• Write programs with nested IF-ELSE structures.
• Make multiple-way selections (switch, case).* (Language specific)

Standard 3
Demonstrate the ability to use loops (iteration) in programs.
• Use initial (starting) value, terminal (ending) condition, and incrementation (change) in loops.
• Construct pretest loops (while), posttest loops (do-while), and for loops.
• Describe the various ways that loops can end (i.e., sentinel, break, condition fail, etc.).
• Design loops so they iterate the correct number of times (i.e., off by one errors, infinite loops, etc.).
• Accumulate running totals using loops.
• Utilize nested loops.

Standard 4
Demonstrate the ability to use modularity in programs using functions or methods.
• Demonstrate how to use language-defined functions and/or methods.*
• Utilize value and/or reference parameters.*
• Understand the scope of identifiers (local, global (class), and instance variables).*
• Return values.

Performance Skills
• Properly employ control structures.

STRAND 5
Students will demonstrate knowledge of current ethical issues dealing with computers and information in a global society using 21st Century Skills.

Standard 1
Demonstrate knowledge of the social and ethical consequences of computers.
• Explain the ethical reasons for creating reliable and robust software.
• Explain the impact software can have on society (i.e., privacy, piracy, copyright laws, ease of use, etc.).
• Show how security concerns can be addressed in an application (i.e., biometrics, passwords, information hiding, etc.).
• Describe how computer-controlled automation affects a workplace and society.
• Give examples of ways to protect information on computer systems (attacks, viruses, malware, etc.).
Performance Skills

• Demonstrate knowledge of current ethical issues dealing with computers and information in society.

STRAND 6

Students will be aware of career opportunities in the Computer Programming/Software Engineering industry and of its history.

Standard 1

Investigate career opportunities, trends, and requirements related to computer programming/software engineering careers.

• Identify the members of a computer programming/software engineering team: team leader, analyst, senior developer, junior developer, and client/subject matter expert.
• Describe work performed by each member of the computer programming/software engineering team.
• Investigate trends and traits associated with computer programming/software engineering careers (creativity, technical, leadership, collaborative, problem solving, design, etc.).
• Discuss related career pathways.

Performance Skills

• Develop awareness of career opportunities in the computer programming/software engineering industry and of its history.

STRAND 7

Students will employ static (array), dynamic (vector, ArrayList, etc.) list structures, and strings. (Semester 2 Strands)

Standard 1

Demonstrate the ability to use static arrays/lists in programs.

• Declare and initialize arrays/lists of all applicable types.
• Perform data input to and output from arrays/lists.
• Perform operations on arrays/lists including sort arrays.
• Iterate through the structure (i.e. for-each, enhanced for, or iterators)

Standard 2

Demonstrate the ability to use dynamic arrays/lists (i.e. vectors, ArrayList, or generic lists)

• Declare and initialize a dynamic array/list.
• Add and remove items from the array/list.
• Output data from arrays/lists.
• Perform operations on arrays/lists.
• Iterate through the structure (i.e. for-each, enhanced for, or iterators)
Standard 3
Demonstrate the ability to use strings in programs.
- Compare string values.
- Find the length of a string.
- Copy part or all of string values into other strings.
- Concatenate string values.
- Locate substring positions.
- Insert strings into other strings.

Performance Skills
- Properly employ static data structures.

STRAND 8
Students will properly employ object-oriented programming techniques.

Standard 1
Demonstrate the ability to use existing classes.
- Instantiate objects.
- Use object data members (i.e., Java’s arr. length).
- Use object member functions (methods).

Standard 2
Demonstrate the ability to create user-defined classes.
- Create and use data members (instance variables).
- Create a constructor to initialize the data members.
- Create and use member functions (methods).

Standard 3
Demonstrate proper design principles with classes.
- Create classes that are well encapsulated (private data members).
- Properly use modifiers and accessors (getters and setters).
- Understand appropriate private and public modifiers according to program design.

Performance Skills
- Properly employ object-oriented programming techniques.

STRAND 9
Students will properly use sequential files.

Standard 1
Demonstrate the ability to use sequential files in programs.
- Create and initialize sequential files.
- Store data to sequential files.
- Retrieve data from sequential files.
• Update sequential files.

Performance Skills
• Properly use sequential files.

STRAND 10
Students will apply appropriate programming skill as an effective member of a team demonstrating the ability to collaborate with others (www.p21.org).

Standard 1
Demonstrate the ability to apply knowledge to a programming project.
• Formalize specifications.
• Choose proper input parameters.
• Choose appropriate data structures and processing.
• Design appropriate output.
• Use appropriate test data.
• Write good documentation.

Standard 2
Demonstrate the ability to use teamwork and collaboration in a programming project.
• Divide a project among programmers.
• Present work to a group.
• Coordinate work with others in the group.
• Complete assigned work according to predetermined deadlines.
• Participate in a peer performance evaluation.
• Demonstrate professionalism in team relationships, communication, timeliness, and attitude.

Performance Skills
• Apply appropriate programming skills as an effective member of a team.

Work Place Skills
Communication, Problem Solving, Teamwork, Critical Thinking, Dependability, Accountability
Skill Certificate Test Points by Strand

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Test #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total Points</th>
<th>Total Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Programming (C++)</td>
<td>822</td>
<td>6</td>
<td>2</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>59</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Computer Programming (Java)</td>
<td>824</td>
<td>6</td>
<td>2</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>59</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Computer Programming (VB)</td>
<td>826</td>
<td>7</td>
<td>2</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>60</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Computer Programming (Python)</td>
<td>827</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>11</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>51</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Computer Programming (C#)</td>
<td>828</td>
<td>6</td>
<td>2</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>59</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>