Explain volume formulas and use them to solve problems (Standards G.GMD.1, 3)

Standard II.G.GMD.1: Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Informal arguments for area formulas can make use of the way in which area scale under similarity transformations: when one figure in the plane results from another by applying a similarity transformation with scale factor *k*, its area is *k*² times the area of the first. *Use dissection arguments, Cavalieri's principle, and informal limit arguments.*

Concepts and Skills to Master

- Develop the formulas for the circumference of a circle, area of a circle, and volume of a cylinder, pyramid, and cone using a variety of arguments.
- Consider why the various formulas work, using drawings and models as needed.
- Use similarity to define π and develop the formula for the circumference of a circle.
- Use a limit argument to develop the area of a circle.
- Use Cavalier's principle to explain why the formulas for the volume of a cylinder, pyramid, and cone work.
- Relate the volumes among various solids with the same dimensions.

Related Standards: Current Course	Related Standards: Future Courses
<u>G.C.4</u> , <u>6.G.2</u> , <u>7.G.4</u> , <u>8.G.9</u>	

Support for Teachers

 Critical Background Knowledge

 • Use mathematical language and a logical progression of ideas to present an argument.

 Academic Vocabulary

 cylinder, right prism, pyramid, cone, dissection argument, Cavalieri's principle, limit argument

 Resources

 Curriculum Resources: http://schools.utah.gov/curr/mathsec/Core/HighSchoolCurriculum.aspx

Explain volume formulas and use them to solve problems (Standards G.GMD.1, 3)

Standard II.G.GMD.3: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. Informal arguments for volume formulas can make use of the way in which volume scale under similarity transformations: when one figure results from another by applying a similarity transformation, volumes of solid figures scale by k_3 under

a similarity transformation with scale factor k.

Concepts and Skills to Master

- Find the volume of cylinders, pyramids, cones, and spheres in contextual problems.
- Apply volume formulas to suggest solutions to real-world problems involving geometric solids.

Related Standards: Current Course	Related Standards: Future Courses
<u>7.G.6, 8.G.9</u>	

Support for Teachers

Critical Background Knowledge

• Formulas for the volumes of cones, cylinders, and spheres (8.G.9).

Academic Vocabulary

pyramid, cylinder, cone, sphere, volume, length, width, height, base, radius, π .

Resources

Curriculum Resources: http://schools.utah.gov/curr/mathsec/Core/HighSchoolCurriculum.aspx