Utah Aspire Plus 2021-2022 Technical Report

2022

TABLE OF CONTENTS

LIST OF TABLES 5

1. INTRODUCTION 6
1.1 BACKGROUND 6
1.2 Purpose of the Operational Tests 8
1.3 Composition of the Operational Tests 8
1.4 Intended Population of the Operational Tests 9
1.5 Overview of the Technical Report 10
2. TEST DEVELOPMENT 11
2.1 OVERVIEW OF THE UTAH ASPIRE Plus AsSESSMENTS, ClAIMS, AND BLUEPRINTS 11
2.1.1 English Assessment Claims 11
2.1.2 Reading Assessment Claims 12
2.1.3 Mathematics Assessment Claims 13
2.1.4 Science Assessment Claims 14
2.2 UTAh Aspire Plus Blueprints 15
2.3 Test Development Activities 16
2.3.1 Operational Forms Development 16
2.3.2 Statistical Guidelines 17
2.3.3 2022 Match to Test Blueprint 18
3. OPERATIONAL ADMINISTRATION 22
3.1 Testing Window 22
3.2 TEST ADMINISTRATION AND SECURITY POLICIES 23
3.2.1 Online Administration and Monitoring 24
3.3 TEST Accommodations and Supports 24
3.4 Test Taking Irregularities and Security Breaches. 27
3.4.1 Test Interruptions. 28
3.4.2 Scoring of Interrupted Tests 28
3.4.3 Wrong Test Form/Accommodation. 28
3.4.4 Extended Time Accommodation Issues 28
3.4.5 Test Invalidation 28
3.5 Test Taker Characteristics 29
3.6 Testing Time 30
4. CLASSICAL ITEM ANALYSES 34
4.1 ITEM ANALYSES 34
4.1.1 p-Value and Item Mean Scores 34
4.1.2 Item-Test Score Correlations 34
4.1.3 Differential Item Functioning 35
4.2 CLASSICAL ITEM SUMMARIES FOR OPERATIONAL ADMINISTRATION 36
5. RELIABILITY 37
5.1 CLassical Definition of Reliability 37
5.2 Classical Test Theory Reliability Estimates 37
5.2.1 Cronbach's Alpha 37
5.2.2 Standard Error of Measurement 38
5.3 IRT-BaSEd ReLiability 38
5.4 Reliability of Performance Level Categorization. 39
5.4.1 Accuracy and Consistency 39
5.4.2 Calculating Accuracy 40
5.4.3 Calculating Consistency 41
5.4.4 Calculating Kappa 41
6. IRT CALIBRATION, EQUATING, AND SCALING 43
6.1 OVERVIEW 43
6.2 IRT DATA Preparation 43
6.2.1 Student Inclusion/Exclusion Rules 43
6.2.2 Quality Control of the IRT Data Matrix Files 43
6.3 Description of the Calibration, Equating, and Scaling Process 44
6.3.1 IRT Models 44
6.3.2 IRTPRO Calibration Procedures and Convergence Criteria 44
6.3.3 Calibration Quality Control 45
6.3.4 Equating 45
6.4 Model Fit Evaluation Criteria 47
6.5 Steps Taken to Ensure Stability of 2022 Equating 49
6.6 SUMMARY STATISTICS AND DISTRIBUTIONS FROM IRT ANALYSES 50
6.7 IRT PATTERN SCORING 52
6.7.1 Quality Control of IRT Scoring 53
7. SCORE REPORTING 54
7.1 Appropriate Uses for Scores and Reports 54
7.2 Utah Aspire Plus Reporting Scale. 54
7.3 Standard Setting 55
7.4 ACT Predicted Score Ranges 56
7.5 2021-2022 Utah Aspire Plus Performance Results 57
8. QUALITY CONTROL 59
8.1 Online Assessment Delivery 59
8.1.1 Item Validation 59
8.1.2 Test Administration 59
8.1.3 Operational Monitoring 60
8.2 Production System Testing. 61
8.2.1 Functional Testing 61
8.2.2 Integration Testing 61
8.2.3 Program Validation End-to-End Testing 61
8.2.4 Load Testing 62
8.2.5 Performance Monitoring 62
8.2.6 Regression Testing 62
8.2.7 User Acceptance Testing 62
8.3 REPORTING 63
8.4 Quality Control of Psychometric Processes 63
9. VALIDITY 64
9.1 Evidence Based on Test Content 65
9.2 Evidence Based on Cognitive Process 66
9.3 Evidence Based on Internal Structure 67
9.3.1 Reliability. 69
9.4 Evidence Based on Different Student Populations 70
9.5 SUMMARY 70
10. REFERENCES 72
APPENDIX A: TEST-LEVEL REPORTING CATEGORIES AND STANDARDS BY ITEM TYPE AND DOK.. 75
APPENDIX B: STUDENT TESTING TIME 81
APPENDIX C: ITEM STATISTICS SUMMARIES 84
APPENDIX D: RELIABILITY AND STANDARD ERROR BY SUBGROUP 88
APPENDIX E: CONDITIONAL STANDARD ERROR OF SCALE SCORES 99
APPENDIX F: ACCURACY AND CONSISTENCY 102
APPENDIX G: COMMON ITEM SCATTERPLOTS FOR 2022 ANCHOR ITEMS 108
APPENDIX H: UPDATING ACT SCORE PREDICTIONS FOR UTAH GRADE 10 SCIENCE ASPIRE PLUS 113
APPENDIX I: SCALE SCORE DESCRIPTIVE STATISTICS BY SUBGROUP 122
APPENDIX J: SCALE SCORE DISTRIBUTIONS FOR OVERALL TESTING POPULATION 128
APPENDIX K: PERFORMANCE LEVEL DISTRIBUTIONS 132
APPENDIX L: PRINCIPAL COMPONENTS SCREE PLOTS 141
APPENDIX M: SUBSCORE CORRELATIONS 144

List of Tables

Table 2.1. Utah Aspire Plus English Grade 9 Operational Test Blueprint Match
Table 2.2. Utah Aspire Plus English Grade 10 Operational Test Blueprint Match

Table 2.3. Utah Aspire Plus Reading Grade 9 Operational Test Blueprint Match 20
Table 2.4. Utah Aspire Plus Reading Grade 10 Operational Test Blueprint Match
Table 2.5. Utah Aspire Plus Mathematics Grade 9 Operational Test Blueprint Match
Table 2.6. Utah Aspire Plus Mathematics Grade 10 Operational Test Blueprint Match
Table 2.7. Utah Aspire Plus Science Grade 9 Operational Test Blueprint Match

Table 2.8. Utah Aspire Plus Science Grade 10 Operational Test Blueprint Match 22
Table 3.1. Spring 2022 Participation Rates for Utah Aspire Plus 30
Table 3.2. Student Testing Time for Spring 2022 Utah Aspire Plus 32
Table 4.1. Item $\mathbf{2 x 2}$ Contingency Table for the kth Score Level 35
Table 5.1. Example Accuracy Classification Table 40
Table 5.2. Example Accuracy Classification Table for Proficient Cut Point 40
Table 5.3. Example Consistency Classification Table 41
Table 6.1. 2022 Final Stocking and Lord Scaling Constants 47
Table 6.2. IRT Summary Parameter Estimates for Utah Aspire Plus Operational Items
Table 6.3. IRT Standard Errors of Parameter Estimates for Utah Aspire Plus Operational Items
Table 7.1. Utah Aspire Plus Scale Score Cuts by Grade and Subject 56
Table 9.1. Model Fit Indices for Confirmatory Factor Analyses 69

1. Introduction

1.1 Background

The Utah Aspire Plus summative assessments were created out of Utah Statute 53E-4-304 (https://le.utah.gov/xcode/Title53E/Chapter4/53E-4-S304.html?v=C53E-4S304_2019051420190514). The statute requires the Utah State Board of Education (USBE) to administer assessments that are predictive of college readiness at grades 9 and 10 in addition to providing overall performance scores and proficiency indicators for English, reading, mathematics, and science. The Utah Aspire Plus assessments are a hybrid of ACT Aspire and Utah Core test items. These are computer-based, fixed-length tests intended to measure end-of-grade-level high school knowledge and skills for students in grades 9 and 10. Spring 2019 marked the first administration of the Utah Aspire Plus assessments and the creation of base reporting scales for each respective grade and subject assessment.

Prior to 2019, students were assessed on the core standards through the Utah Student Assessment of Growth and Excellence (SAGE) assessment program. The Utah Aspire Plus assessment program is an extension of the Utah SAGE, still intended to measure student performance in relation to the Utah Core Standards (https://www.uen.org/core/), but also intending to measure students' preparedness for meeting college readiness benchmarks. As such, the assessment content from Utah SAGE is used as one component of the Utah Aspire Plus assessments.

Additional content from ACT Aspire is used to provide predictions of performance on the ACT®. This content also aligns to the Utah Core Standards and is counted toward Utah Aspire Plus scores too. The $A C T^{\circledR}$ is the primary college readiness assessment submitted to local universities in Utah. As such, the Utah Aspire Plus assessments incorporate test questions from the ACT Aspire assessments that are used not only to contribute to student overall scores but also to provide a predictive indicator of performance on the $A C T^{\circledR}$. Students receive predicted $A C T{ }^{\circledR}$ score ranges for each $A C T^{\circledR}$ subtest (English, reading, mathematics, and science), as well as an overall predicted composite $A C T{ }^{\circledR}$ score range.

As required by the statute noted previously, the assessments also provide overall scores as indicators of end-of-grade-level expectations for 9th and 10th grade students and performance level indicators (Below Proficient, Approaching Proficient, Proficient, and Highly Proficient) for English, reading, mathematics, and science.

As stated, the first operational administration was conducted in the spring of 2019 at grades 9 and 10 for English, reading, mathematics, and science. Data from that administration were used to establish the initial Utah Aspire reporting scales and the setting of performance levels. Technical details of these features and activities are presented in the 2018-2019 Utah Aspire Plus Technical Report (http://utah.pearsonaccessnext.com/resources/additional-services/201819\ UA+\ Tech\ Report_Web.pdf).

Note that spring 2020 was intended to be the second operational administration of the Utah Aspire Plus tests. In spring of 2020, Senate Bill 3005, which included a waiver of the Utah Aspire Plus assessment requirements, was passed during the Utah Legislature's 3rd Special Session of 2020 and signed into law on April 22, 2020. As a result, the spring testing of Utah Aspire Plus was cancelled. As a result, spring 2021 marked the second administration of the Utah Aspire Plus assessments. However, it should be noted that a waiver was sought and granted by the U.S. Department of Education (Department) to waive the accountability, school identification, and related reporting requirements for the 2020-2021 school year (https://www.schools.utah.gov/file/829f7300-020d-456e-85ac-49e85ef0795a).

Mathematics, reading, and English summative assessments for the Utah Aspire Plus administration were created in 2019 for use in spring 2020. Given the cancellation of testing in spring 2020, the tests were instead rolled over and administered in spring 2021. Spring 2021 also marked the initial administration of new science tests. The Utah Aspire Plus Science with Engineering Education Standards (SEEds) summative assessments were administered to Utah students in spring 2021. These assessments are composed of test units that are designed to measure multidimensional knowledge and skill interactions across different scientific phenomena within core disciplines.

The tests were administered as an operational field test, meaning that items used to provide scores for students were identified after the administration. That identification activity was akin to the standard test construction process involving Pearson and USBE content experts and psychometricians working to identify the best forms based on match to blueprint and statistical indices. After these forms were determined they were then used to set performance standards in August of 2021.

Spring of 2022 marked the third administration of the Utah Aspire Plus assessment for English, reading and math and the second administration of the science assessment following the establishment of the base scale in 2021.

1.2 Purpose of the Operational Tests

The Utah Aspire Plus assessments are designed for several purposes. First, the tests are intended to measure the breadth and depth of the Utah Core Standards and measure across all levels of student performance. Second, the tests are created to provide awareness of individual achievement in relation to stated performance expectations. Third, performance on the tests is intended to provide evidence of whether students are on track for college and career readiness. Finally, the tests are used to evaluate growth between 9th and 10th grade.

1.3 Composition of the Operational Tests

Each operational Utah Aspire Plus test form was constructed to reflect the full test blueprint in terms of content, standards measured, and item types (http://utah.pearsonaccessnext.com/additional-services/). All blueprints were designed to measure knowledge and skills described in the Utah Core Standards (https://www.uen.org/core/). For science, the operational assessments were created to measure the new Science with Engineering Education Standards (SEEds). The standards were derived from several research-based sources such as A Framework for K-12 Science Education and the Next Generation Science Standards (NGSS).

The Utah Aspire Plus tests are composed of several different types of items to measure student performance. These include multiple choice, multiple select, evidence-based selected response, and technology enhanced (TE). Multiple-choice items present students with four or five responses, of which there is one correct answer. Multiple-select items require students to select two or three correct choices from several presented choices. Evidence-based selected response items have two parts: Part A is designed as an identification component, where Part B is designed to elicit an evidence-based component. Further, these types can be designed as two multiple-choice items, or a combination of multiple-choice and technology-enhanced (TE) items. Technology-enhanced (TE) items require specialized interactions within the online presentation for capturing student responses (e.g., drag and drop).

The Utah Aspire Plus English tests target language conventions and comprehension. Students should be able to demonstrate command of standard

English grammar, usage, capitalization, punctuation, and spelling. In addition, students should be able to demonstrate vocabulary knowledge in comprehending complex texts.

The Utah Core Standards in Reading define expectations of comprehension skills, understanding tone and point of view of texts, and evaluating texts. On the Utah Aspire Plus Reading tests, students must demonstrate these skills with different types of text sources.

The assessment context for Utah Aspire Plus Mathematics is grounded in five conceptual categories from the Utah Core Standards: Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. There are two general levels of math content for Utah Aspire Plus. The first level, referred to as Secondary Math I, extends the mathematics from the middle grades, particularly on linear and exponential relationships. The next level, Secondary Math II, focuses on quadratic relationships and comparing them to the linear and exponential relationships from Secondary Math I.

The primary emphasis of the new Utah Aspire Plus Science tests is on the multidimensional nature as expressed within the NGSS. Specific Science and Engineering Practices (SEP) and Cross-Cutting Concepts (CCC) are identified within four reporting targets (Gathering and Investigating, Developing Models, Using Mathematical Thinking, and Constructing Explanations). These are further represented within the Disciplinary Core Ideas (DCI) of Life Science, Physical Science, and Earth and Space Science.

1.4 Intended Population of the Operational Tests

The Utah Aspire Plus tests are designed for students completing their 9th and 10th grade courses in English Language Arts (ELA), mathematics, and science. The English and reading tests are designed to assess the skills that 9th and 10th grade ELA students should have by the end of those respective years. The mathematics tests are designed to assess the skills that 9th (Secondary Math I) and 10th grade (Secondary Math II) math students should have by the end of those respective years. The science tests are designed to assess the skills that 9th and 10th grade students taking biology, chemistry, Earth science, or physics should have by the end of instruction (regardless of the specific course).

1.5 Overview of the Technical Report

The intended audience of the report are those with a basic technical understanding of large-scale assessment systems and their uses. It assumes some technical knowledge of how score scales are developed and derived and how scores are intended to support valid interpretations of intended claims.

This report provides details of the maintenance of the Utah Aspire Plus testing system at grades 9 and 10 for mathematics, science, reading and English. In addition to a general overview that provides a frame of reference around key attributes of the assessments, the report provides details around development of items and test forms, the administration of operational tests, the maintenance of existing scales, and of scoring and reporting for all tests. Throughout the report, the narrative is intended to present an interpretive argument whereby the various claims of the assessment system are identified and described throughout the test development process from creation through administration and score reporting. Technical details are presented in the following chapters and address test design, development and implementation, test administration, test taker characteristics, classical item analyses, reliability analyses, item response theory (IRT) calibrations, equating, and scaling, quality control procedures, and evidence of validity.

2. Test Development

2.1 Overview of the Utah Aspire Plus Assessments, Claims, and Blueprints The Utah Aspire Plus assessments are aligned to the Utah Core Standards and designed to measure the breadth and depth of the Utah Core Standards across all levels of student performance, to provide awareness of individual achievement in relation to stated performance expectations, and to provide evidence of whether students are on track for college and career readiness. Utah Aspire Plus content follows a rigorous development process that meets and often exceeds industry standards for best practices in assessment. Every item, written by Utah teachers, goes through an extensive review designed to ensure adherence to high quality and the principles of universal design.

This chapter describes the claims intended to support the purposes outlined in Chapter 1; the development of blueprints defining the components of the Utah Aspire Plus assessments that reflect the breadth of the Utah Core Standards across different levels of student understanding; and the development of tasks (items) intended to fulfill the respective blueprints and provide evidence of varying levels of performance reflective of each of the stated claims.

It should be noted that while both claims and sub claims are presented here for each subject, only the claims are reported on individual student reports (ISR). Sub claims currently only provide structure within the respective blueprints but are not reported at the individual student level.

2.1.1 English Assessment Claims

The Utah Aspire Plus English tests target language conventions and comprehension. Students should be able to demonstrate command of standard English grammar, usage, capitalization, punctuation, and spelling. In addition, students should be able to demonstrate vocabulary knowledge in comprehending complex texts.

The claim structure for the Utah Aspire Plus English tests is drawn from the Utah Core Standards and frames the design and development of the summative tests at grades 9 and 10.

Claims: The primary claims reflect the main goals for the use of the Utah Aspire Plus English tests. The first is that student performance reflects an indicator of career and college readiness as demonstrated through students'
understanding of language conventions and comprehension as expected to have been attained by the end of each respective year as a prediction of performance on the ACT® English test. Second is that overall performance reflects students' understanding of language conventions and comprehension with respect to the breadth and depth of the Utah Core Standards and measures across all levels of student performance.

Sub Claims:* The sub claims further explicate what is measured on Utah Aspire Plus English tests and are grouped into the following categories:

- Production of Writing
- Knowledge of Language
- Conventions of Standard English

2.1.2 Reading Assessment Claims

The Utah Aspire Plus Reading tests define expectations of comprehension skills, understanding tone and point of view of texts, and evaluating texts. On the Utah Aspire Plus Reading tests, students must demonstrate these skills with different types of text sources.

The claim structure for the Utah Aspire Plus Reading tests is drawn from the Utah Core Standards and frames the design and development of the summative tests at grades 9 and 10.

Claims: The primary claims reflect the main goals for the use of the Utah Aspire Plus Reading tests. The first is that student performance reflects an indicator of career and college readiness as demonstrated through students' ability to read and comprehending complex informational and literary texts as expected to have been attained by the end of each respective year as a prediction of performance on the $\mathrm{ACT}{ }^{\circledR}$ Reading test. Second is that overall performance reflects students' understanding of reading and comprehending complex informational and literary texts with respect to the breadth and depth of the Utah Core Standards and measures across all levels of student performance.

Sub Claims:* The sub claims further explicate what is measured on Utah Aspire Plus Reading tests and are grouped into the following categories:

[^0]- Key Ideas
- Craft and Structure
- Integration of Knowledge and Ideas

2.1.3 Mathematics Assessment Claims

The Utah Aspire Plus Mathematics tests are grounded in five conceptual categories from the Utah Core Standards: Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. There are two levels of math content for Utah Aspire Plus that reflect expectations at grades 9 and 10, respectively. The first level (grade 9), referred to as Secondary Math I, extends the mathematics from the middle grades, particularly on linear and exponential relationships. The next level, Secondary Math II (grade 10), focuses on quadratic relationships and comparing them to the linear and exponential relationships from Secondary Math I.

The claim structure for the Utah Aspire Plus Math tests is drawn from the Utah Core Standards and frames the design and development of the summative tests at grades 9 and 10.

Claims: The primary claims reflect the main goals for the use of the Utah Aspire Plus Reading tests. The first is that student performance reflects an indicator of career and college readiness as demonstrated through students' ability to understand linear relationships, abstract and quantitative reasoning, and problem solving as expected to have been attained by the end of each respective year as a prediction of performance on the ACT ${ }^{\otimes}$ Math test. Second is that overall performance reflects students' understanding of linear relationships, abstract and quantitative reasoning, and problem solving with respect to the breadth and depth of the Utah Core Standards and measures across all levels of student performance.

Sub Claims:* The sub claims further explicate what is measured on Utah Aspire Plus Math tests and are grouped into the following categories:

Math I (Grade 9)

- Algebra
- Functions
- Geometry
- Statistics and Probability

Math II (Grade 10)

- Number and Quantity
- Algebra
- Functions
- Geometry
- Statistics and Probability

2.1.4 Science Assessment Claims

The Utah Aspire Plus Science tests are developed around the Utah Core Standards for science as described in the Science with Engineering Education Standards (SEEds). These skills are applicable regardless of domain (Biology, Physics, Earth Science, and Chemistry). The claim structure for the Utah Aspire Plus Science tests is drawn from the Utah Core Standards as described in the SEEds and frames the design and development of the summative tests at grades 9 and 10.

Claims: The primary claims reflect the main goals for the use of the new Utah Aspire Plus Science tests. The first is that student performance reflects an indicator of career and college readiness as demonstrated through students' ability to understand and apply science as defined by the SEEds. Further, as expected to have been attained by the end of each respective year as a prediction of performance on the $A C T{ }^{\circledR}$ Science test. Second is that overall performance reflects students' understanding of science as defined by the SEEds with respect to the breadth and depth of the Utah Core Standards and measuring across all levels of student performance.

Sub Claims:* The sub claims further explicate what is measured on the new Utah Aspire Plus Science tests and are grouped into the following categories with respective SEP and CCC targets:

- Gathering and Investigating
- SEPs: Asking questions and defining problems; Obtaining, evaluating, and communicating information; Planning and carrying out investigations
- CCCs: Patterns; Cause and effect; Systems and system models; Energy and matter; Structure and function; Stability and change Use Science Process and Thinking Skills
- Developing Models
- SEPs: Developing and using models
- CCCs: Patterns; Cause and effect; Scale, proportion and quantity; Systems and system models; Energy and matter; Stability and change
- Using Mathematical Thinking -
- SEPs: Analyzing and interpreting data; Using mathematics and computational thinking
- CCCs: Patterns; Cause and effect; Scale, proportion, and quantity; Systems and system models; Energy and matter; Stability and change
- Constructing Explanations -
- SEPs: Constructing explanations and designing solutions; Engaging in argument from evidence
- CCCs: Patterns; Cause and effect; Systems and system models; Energy and matter; Structure and function; Stability and change

These are expressed across the Life Science, Earth and Space Science, and Physical Science DCIs.

2.2 Utah Aspire Plus Blueprints

The Utah Aspire Plus tests are administered in English, reading, mathematics, and science in grades 9 and 10 and are described in Section 1.3. For the Utah Aspire Plus tests, the creation of test blueprints was driven by the intended purposes detailed previously in order to support the respective claim structures. The blueprints for Utah Aspire Plus are the distribution of item types across domains/reporting categories, level of cognitive demand, and the number of total points associated with each.

For the new science tests, The SEEds blueprints assume a design in which one of the three DCls will be assessed by two clusters and the other two DCls with a single cluster. Coverage of the respective DCls will rotate across forms (either within a given year or across years) to ensure the standards are fully represented over time.

The 2022 Utah Aspire Plus blueprints can be found at: http://utah.pearsonaccessnext.com/additional-services/.

2.3 Test Development Activities

Prior to the creation of Utah Aspire Plus, students were tested on the Utah Core Standards through the Utah Student Assessment of Growth and Excellence (SAGE). The Utah Aspire Plus Mathematics, Reading, and English assessments were built from existing Utah SAGE banked content combined with items from ACT Aspire to allow for predictions of students' preparedness for meeting college readiness. All available content for creation of the 2020 Utah Aspire Plus tests was based on the existing item banks described in the 2018-2019 Utah Aspire Plus Technical Report.

For creation of the 2022 tests, two important design elements are worth noting. The first is that sets of items administered in either 2019 or 2021 were selected to serve as linking or common items that would be used to equate the 2022 Utah Aspire Plus tests to the base scales (2019 for English, math and reading and 2021 for science) within a common item non-equivalent groups equating design (Kolen and Brennan, 2014). For test development purposes, this meant selecting sets of items to ideally reflect a miniature version of the overall test (typically at least 20 percent) in content as well as statistical characteristics. The second element worth noting is that a different set of ACT Aspire content was used for this year's forms development activity. This helps limit exposure of the Aspire content that might otherwise negatively impact ACT predication score activities. However, it also meant linking sets used for equating did not have any ACT content available to serve as common items for the 2022 test forms. Still, final linking sets that reflected at least 20 percent of the overall tests and of comparable content were able to be selected for the Utah Aspire Plus tests.

2.3.1 Operational Forms Development

The construction of test forms for the 2022 Utah Aspire Plus was a coordinated effort between experts from the Utah State Board of Education, Pearson, and ACT. This process required adhering to guidelines that promote fair and ethical testing practices. Using the content developed to measure the Utah Core Standards, specialists worked through an iterative process to evaluate the specific items, passages, and stimuli that best met the intended measurement targets and to support all stated claims.

The Utah Aspire Plus assessments measure students' mastery of the Utah Core Standards or the Utah Aspire Plus Science with Engineering Education Standards. These standards are used to drive Utah instruction as well as developing the Utah Aspire Plus tests. As stated earlier, the Utah Aspire Plus assessments are designed
so that test scores can be linked to ACT scales to provide students with indicators of being prepared for meeting college readiness benchmark. In order to accomplish this, approximately 50% of the Utah Aspire Plus tests (less for mathematics) are composed of items from ACT Aspire. As noted, these items serve multiple purposes, which include being used to derive prediction scores between the Utah Aspire Plus scales and ACT scales.

The general test development process for Utah Aspire Plus was initiated with the selection of items from ACT Aspire. Items were selected based on match to blueprint, as well as statistical indicators of item quality and fairness provided from the SAGE and ACT Aspire banks, respectively. ACT Aspire items were positioned within each form in the same locations as originally administered within ACT Aspire forms to help facilitate the derivation of the predictive scores on Utah Aspire Plus.

Once the ACT Aspire items were selected, Pearson psychometrics selected sets of items common to 2019 or 2021 forms that would be used to equate the base scales (2019 for English, reading and math; 2021 for science). In addition to selecting items to be as similar as possible to the overall blueprints, but they were also targeted to the original base scale difficulties.

This procedure was an iterative process whereby the first proposed form is evaluated by each party (Pearson, USBE, and ACT) for content and psychometric quality, feedback provided, and revisions made until a best final version was approved by all. It should be noted that without new development of content, bank limitations meant an inability to strictly meet the new blueprint in all cases (see below). It also meant that there were also instances where items with poorer statistical indices were included to meet the blueprint. These were infrequent and, in all cases, deemed reasonable in supporting the intended claims without negative impact. Moving forward, newly developed content will fill gaps and address such limitations as the assessments mature.

2.3.2 Statistical Guidelines

While the initial Utah Aspire Plus tests were primarily driven by content considerations, statistical indices were available based on use within the SAGE and ACT Aspire Plus assessments. For creation of Utah Aspire Plus tests, some general guidelines were used to help support selection of a range of item difficulties and evaluate item quality to ensure the best overall test forms. These indices are described in detail further on in the report.

The guidelines for creation of the Utah Aspire Plus forms were as follows:

- Target item difficulty range of between $\mathbf{0 . 3 0}$ and $\mathbf{0 . 8 5}$. Based on p-values, where the percentage reflects the percentage of students correctly responding to the item. Items awarding more than one point used the item mean divided by the maximum points possible to place on the p-value metric.
- Target threshold for item discrimination of $\mathbf{0 . 2 0}$ and above. Where item discrimination is defined by item-total score correlations.
- Extreme differential item functioning (DIF) indices should be avoided. A standard flagging convention indicates differences of magnitude and classifies the most extreme cases of DIF as "C," moderate DIF as "B," and minor to no DIF as "A." As such, items flagged "C" should be avoided and minimal use of items flagged "B" should be used and/or balanced within a form where possible.

More detailed description of the statistical indices reflecting item functioning for the Utah Aspire Plus tests appears later in this report, and distributional results by grade and subject test from the 2022 operational administration are presented in Appendix C. It should be noted that Appendix E reflects post hoc calculations, not what was available within the context of test construction. It should further be noted that while most items selected to appear on the initial Utah Aspire Plus forms were within the guidelines described here, there were instances in which bank limitations meant some items did fall outside the thresholds.

2.3.3 2022 Match to Test Blueprint

Table through 8 present the match between the final 2022 operational forms of Utah Aspire Plus and the test blueprints. English, reading, math, and science final forms reasonably matched all targets by item type, depth of knowledge, and reporting category (within 5 percent).

Table 2.1. Utah Aspire Plus English Grade 9 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Multiple Choice	$24-31$	48%	62%	65%
Technology Enhanced	$20-26$	40%	52%	35%
Depth of Knowledge				
Level 1	$22-33$	44%	66%	57%
Level 2	$5-12$	10%	24%	17%
Level 3	$12-17$	24%	34%	26%
Reporting Categories				
Conventions of Standard English	$28-38$	56%	76%	67%
Knowledge of Language	$4-10$	8%	20%	9%
Production of Writing	$9-14$	18%	28%	24%

Table 2.2. Utah Aspire Plus English Grade 10 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Multiple Choice	$24-31$	48%	62%	66%
Technology Enhanced	$20-26$	40%	52%	34%
Depth of Knowledge				
Level 1	$22-33$	44%	66%	50%
Level 2	$5-12$	10%	24%	20%
Level 3	$12-17$	24%	34%	30%
Reporting Categories				
Conventions of Standard English	$28-38$	56%	76%	64%
Knowledge of Language	$4-10$	8%	20%	14%
Production of Writing	$9-14$	18%	28%	23%

Table 2.3. Utah Aspire Plus Reading Grade 9 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Evidence-Based Selected Response	$4-6$	10%	17%	14%
Multiple Choice	$22-29$	62%	82%	69%
Technology Enhanced	$2-5$	6%	14%	17%
Depth of Knowledge	$4-10$	11%	28%	14%
Level 1	$12-20$	34%	57%	51%
Level 2	$9-14$	25%	40%	34%
Level 3				
Reporting Categories	$14-20$	40%	57%	37%
Craft and Structure	$3-5$	9%	14%	17%
Integration of Knowledge and Ideas	$9-18$	26%	51%	46%
Key Ideas				

Table 2.4. Utah Aspire Plus Reading Grade 10 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Evidence-Based Selected Response	$4-6$	10%	17%	11%
Multiple Choice	$22-29$	62%	82%	71%
Technology Enhanced	$2-5$	6%	14%	17%
Depth of Knowledge	$4-10$	11%	28%	14%
Level 1	$12-20$	34%	57%	49%
Level 2	$9-14$	25%	40%	37%
Level 3	$14-20$	40%	57%	40%
Reporting Categories	$3-5$	9%	14%	14%
Craft and Structure	$9-18$	26%	51%	46%
Integration of Knowledge and Ideas				
Key Ideas				

Table 2.5. Utah Aspire Plus Mathematics Grade 9 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Multiple Choice	$30-33$	75%	83%	78%
Technology Enhanced	$7-10$	18%	25%	23%
Depth of Knowledge				
Level 1	$8-12$	20%	30%	28%
Level 2	$15-20$	38%	50%	50%
Level 3	$9-13$	23%	33%	23%
Reporting Categories				
Algebra	$9-11$	23%	28%	25%
Functions	$10-12$	25%	30%	30%
Geometry	$9-11$	23%	28%	25%
Statistics and Probability	$7-9$	18%	23%	20%

Table 2.6. Utah Aspire Plus Mathematics Grade 10 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Multiple Choice	$30-33$	75%	83%	80%
Technology Enhanced	$7-10$	18%	25%	20%
Depth of Knowledge				
Level 1	$8-12$	20%	30%	30%
Level 2	$15-20$	38%	50%	48%
Level 3	$9-13$	23%	33%	23%
Reporting Categories				
Number and Quantity	$2-4$	5%	10%	25%
Algebra	$9-11$	23%	28%	28%
Functions	$10-12$	25%	30%	30%
Geometry	$11-13$	28%	33%	8%
Statistics and Probability	$2-4$	5%	10%	10%

Table 2.7. Utah Aspire Plus Science Grade 9 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Multiple Choice/Select	$19-22$	76%	88%	78%
Technology Enhanced	$3-6$	12%	24%	22%
$D C I$	$5-7$	20%		
Earth and Space	$13-15$	52%	28%	43%
Life	$5-7$	20%	60%	30%
Physical			28%	26%
Reporting Categories	$3-6$	12%		
Developing Models	$6-8$	24%	24%	26%
 Investigating	$3-6$	12%	32%	26%
Construct Explanations	$9-11$	36%	24%	22%
Mathematical Thinking			44%	26%

Table 2.8. Utah Aspire Plus Science Grade 10 Operational Test Blueprint Match

	Number of Items	Minimum \%	Maximum \%	2022 Form
Item Type				
Multiple Choice/Select	$20-21$	87%	91%	87%
Technology Enhanced	$2-3$	9%	13%	13%
$D C l$				
Earth and Space	$5-6$	22%	26%	22%
Life	$6-8$	26%	35%	52%
Physical	$10-11$	43%	48%	26%
Reporting Categories				
Developing Models	$2-5$	9%	22%	26%
 Investigating	$2-3$	9%	13%	
Construct Explanations	$9-11$	39%	48%	22%
Mathematical Thinking	$5-9$	22%	39%	22%

For additional information on the 2022 operational forms, Appendix A contains a breakdown reporting categories and standards by item type and depth of knowledge (DOK), with the exception of science that does not use DOK.

3. Operational Administration

3.1 Testing Window

The 2022 administration of the Utah Aspire Plus assessments was March 7 - May 13, 2022. Utah Aspire Plus can be administered on a subject-by-subject basis or as a complete battery with all tests administered in one sitting. Each subject test,
however, must be administered in one sitting. In other words, once a subject test is started, it must be completed within that sitting.

3.2 Test Administration and Security Policies

Comprehensive details of the Utah Aspire Plus test administration are detailed in the Test Administration Manual (TAM, http://utah.pearsonaccessnext.com/training/) as well as via the Utah Aspire Plus Resource Center
(http://utah.pearsonaccessnext.com/training/). These resources cover all policies, procedures, specifications, training, instructions, security, accommodations, and oversight for every aspect of the Utah Aspire Plus test administration. These resources are further presented in a manner that addresses those responsible for carrying out the administration for all students as well as for educators and students to become familiar with the tests themselves (e.g., via practice tests and such) and for interpretation of test scores.

The Utah Aspire Plus tests are secure tests that follow the Utah Aspire Plus blueprints for each assessed subject area. All test items are secured items and may not be reviewed with students, discussed as a class, or reviewed during instructional conversations. Discussing, reviewing, recording, or transcribing test questions in any format is a violation of test security. All test security requirements of Utah Aspire Plus must be met. Personnel involved in test administration must complete testing ethics training. The Utah Standard Test Administration and Testing Ethics policy can be found here: https://www.utah.gov/pmn/files/704165.pdf.

The LEA Assessment Director was responsible for ensuring that each student had an appropriate opportunity to demonstrate knowledge, skills, and abilities related to Utah Aspire Plus-assessed courses. This ensures that each student had a standardized (similar and fair) testing experience. Each LEA was responsible for determining school testing schedules. Subject tests did not have to be administered in any prescribed order. Subject tests could not be divided into multiple sessions. Once a subject test session began, the subject test had to be completed within that sitting.

It should be noted that the previous SAGE tests were untimed. To support the derivation of predictive scores on the ACT ${ }^{\circledR}$, the Utah Aspire Plus assessments follow the same fixed testing time conditions. For the 2021-2022 administration, the testing times were: 45 minutes for English,75 minutes each for Reading and Mathematics, and 60 minutes for Science. It should be noted that students whose

IEP, Section 504, or English Learner plan specified an accommodation for extended time were able to use extended time accommodations on Utah Aspire Plus as appropriate.

3.2.1 Online Administration and Monitoring

The Utah Aspire Plus tests are administered online via the Pearson test management and delivery systems. PearsonAccess ${ }^{\text {next }}$ is the web application used by test staff (i.e., test coordinators, room supervisors) to manage online testing and start and monitor tests. TestNav is the test delivery engine used by examinees to take the tests. TestNav provides advance warning of network issues that prevent sending student responses to the Pearson testing server. When the network is functioning normally, TestNav sends student responses to the Pearson testing server in real time, while the student is testing. If the student's device cannot connect to the Pearson servers, TestNav saves the response to an encrypted file and allows the student to continue testing. When the network connection is reestablished, the test proctor can upload a student's saved responses to Pearson's testing server, and then TestNav erases the encrypted response file from the student's device or local network. As part of test security, test administrators control individual student authorization by printing and distributing testing tickets with each student's identifying information and unique log-in credentials.

Pearson's operational monitoring practices and tools constantly verify that platforms remain available to users; that performance stays within acceptable limits; and that users do not encounter critical errors. Additionally, monitoring includes real-time security auditing and systems vulnerability monitoring throughout a given testing window.

3.3 Test Accommodations and Supports

The Utah Aspire Plus tests are provided to account for a range of accessibility features for all testers and accommodations for students with disabilities. Accommodations are determined by an EL, Individualized Education Program (IEP), or Section 504 team. Both federal and state laws require that all students be administered assessments intended to hold schools accountable for the academic performance of students. These laws include state statutes that regulate Utah's Accountability Systems. Additional laws include the 2015 reauthorization of ESEA, the Every Student Succeeds Act (ESSA), and the Individuals with Disabilities Education Improvement Act of 2004 (IDEA). All students are expected to participate
in the state accountability system. This principle of full participation includes EL students, students with an Individualized Education Program (IEP), and students with a Section 504 plan.

For Utah Aspire Plus, accommodated test forms include Spanish-language forms and forms with assistive technology. These forms are modified reproductions of the original test forms. Modifications primarily involve incorporation of the accommodation with the intent of otherwise preserving the item content in its original form. Assistive technology within online test forms includes speech-to-text, magnification, and adaptive keyboard and mouse. Paper accommodations are also offered in the form of standard-print, large-print, and Braille reproductions.

For students requiring Braille, paper versions of the original forms are created, and student responses are transcribed into one of the assistive technology test formats. For items that are not able to be adopted as is and some modification must occur to create the accommodated parallel version. These are referred to as "sister" items and are created directly from the original item to preserve every aspect of the item as it is used in the original form, to include capture of student responses such that item characteristics are directly comparable. While this typically involves only a few items on a given assessment, the Spanish-language forms must be fully transadapted. This process is not only a matter of directly translating a test form's English text to Spanish, but also of adapting the content to account for the linguistic and cultural differences between speakers of the two different languages.

Creation of all transadapted and sister items for the Utah Aspire Plus assessments follow a similar process of creation and review as the original items, with an emphasis on fully matching to the original item in terms of content and function. That is, highly qualified item writers with extensive expert content experience are involved in the creation and review process of transadapted and/or sister item creation. Several reviews are held throughout the creative process involving Pearson and USBE content and psychometric experts to ensure match to source.

Testing accommodations and supports, including those mentioned above, are outlined in the TAM. (A complete list of accessibility and accommodation features for the Utah Aspire Plus assessments can be found in the accessibility and accommodations manual insert at http://utah.pearsonaccessnext.com/resources/training/UT1130483_SummSp21TAN _WebTag.pdf.)

Embedded and non-embedded supports are generally available to all students, whether through the online system or locally arranged. The list below provides the embedded and non-embedded supports provided within Utah Aspire Plus, as outlined in the TAM:

- Embedded:
- In browser/app zoom
- Answer eliminator
- Calculator - Desmos graphing and Desmos scientific
- Bookmarking items for review
- Line reader mask
- Color contrast
- Answer masking
- Highlighter
- Keyboard navigation
- Text-to-speech (English)
- Directions reread (text-to-speech)
- Text-to-speech (Spanish)
- Personalized visual modification of remaining time
- Non-embedded:
- Word to word dictionary
- Scratch paper
- Line reader
- Supervised breaks within each day
- Special seating/grouping
- Location for movement
- Separate/alternate location
- Minimized distractions
- Food or medication for individuals with medical needs
- Administration and optimum time of day
- Special lighting
- Adaptive equipment/furniture
- Wheelchair-accessible room

Testing accommodations require prior designation in a student's Individualized Education Program (IEP), 504, or English Learner (EL) plan. The list below provides the test accommodations, in addition to those supports previously mentioned.

- Assistive technology - screen reader
- Speech to text - assistive technology scribe
- Other assistive technology
- Spanish transadaptation
- Online test translation - other languages than Spanish or English
- Standard print
- Large print
- Braille plus tactile graphics
- Extra time
- Personalized auditory notification of remaining time
- Breaks: stop the clock
- Breaks: extending over multiple days
- Human scribe
- Home administration
- Human reader
- Signed exact English (directions only)
- Sign language interpretation
- Cued speech
- Alternate mouse pointer
- Zoom percentage
- Abacus

3.4 Test Taking Irregularities and Security Breaches

Test irregularities are non-standard situations that occur during test administration that affect one or more students. This includes students experiencing computer problems, experiencing a sudden illness, having to leave the room, or becoming unduly disturbed by the testing situation. Testing staff are trained to become familiar with the policy around unexpected/unforeseen circumstances prior to testing.

Some students may be unable to participate in regular testing schedules due to absence, technical difficulties, or other unforeseen circumstances. Opportunities for these students to complete each assessment were provided within the school's testing window. If there was an emergency that interrupted testing for an entire class or school, decisions about whether a test could be started again or not were to be made on a case-by-case basis by working with the Utah State Board of Education assessment team.

3.4.1 Test Interruptions

In the event that a student got sick, had to leave and could not return during the test, or for any other reason did not complete a test which had already begun, the test was to be concluded and submitted immediately. To maintain the security of the test questions, students were not allowed to restart or take a test over again.

3.4.2 Scoring of Interrupted Tests

If a student was interrupted and completed only part of a test before it was concluded and submitted, the student might not have received a score. A student must have attempted 85% of the questions to receive a score. If a student did not attempt at least 85% of the test questions, a score could not be generated, and no test score would be reported for that particular test. Overall composite scores would not be available for students who had missing subject test scores because the composite score is calculated using all four subject tests.

3.4.3 Wrong Test Form/Accommodation

If a student began a test using a test form or accommodation that they were not supposed to have, the teacher/proctor should have immediately stopped the test. In those instances, a new test assignment had to be created and a new test administration could proceed as normal from that point.

3.4.4 Extended Time Accommodation Issues

Extended time accommodations must be applied before preparing and starting sessions. In the event the accommodation is applied after the session has been prepared and started, students receive a time expired warning that has a link for "Proctor only." At that point a proctor can confirm the student should have extended time and is able to set the student up to continue testing as per their accommodation.

3.4.5 Test Invalidation

Tests could be invalidated when a student's performance was not deemed an accurate measure of their ability (e.g., the student cheated, used inappropriate materials, etc.). Where a test is invalidated, the student is not given another opportunity to take the test. Invalidating a test had to be completed by the district testing administrator.

3.5 Test Taker Characteristics

Table 3.1 provides the participation rates for each Utah Aspire Plus test by subgroup. These are students that received a valid test score on a subject test. Cases that did not have a valid test score were excluded from being counted.

Table 3.1. Spring 2022 Participation Rates for Utah Aspire Plus

Students	Subgroup	English		Reading		Math		Science		
		Gr.10	Gr. 9	Gr. 10	Gr. 9	Gr. 10	Gr. 9	Gr. 10		
Gender	Ftudents Scored	46,490	42,861	46,570	42,929	45,352	42,087	46,392	42,539	
	Male	47.68	47.52	47.57	47.50	47.37	47.32	47.52	47.47	
	Hispanic or Latino									
	Ethnicity	19.21	18.91	19.34	18.98	18.98	18.72	19.37	18.92	
	Asian	1.69	1.79	1.68	1.78	1.69	1.80	1.67	1.78	
	Native Hawaiian or									
	Other Pacific Islander	1.42	1.47	1.44	1.50	1.47	1.46	1.49	1.49	
	Black or African									
	American	1.23	1.32	1.23	1.31	1.21	1.31	1.25	1.32	
	American Indian or									
	Alaska Native	0.98	0.91	1.00	0.92	0.94	0.89	1.00	0.91	
	White	72.40	72.69	72.21	72.61	72.63	72.88	72.11	72.67	
	Other	3.07	2.92	3.09	2.90	3.07	2.93	3.12	2.91	
Limited	No	92.21	93.56	92.12	93.56	92.28	93.62	92.09	93.55	
English										
Proficiency	Yes	7.79	6.44	7.88	6.44	7.72	6.38	7.91	6.45	
Economic	No	75.81	77.33	75.66	77.30	76.06	77.53	75.69	77.25	
Disadvantage	Yes	24.19	22.67	24.34	22.70	23.94	22.47	24.31	22.75	
Special	No	90.26	90.87	90.22	90.89	90.29	90.93	90.21	90.89	
Education	Yes	9.74	9.13	9.78	9.11	9.71	9.07	9.79	9.11	

3.6 Testing Time

One of the key questions in moving from an untimed to a timed test administration (from SAGE to Utah Aspire Plus) is gauging the extent to which the time allotted appears to be reasonable. As mentioned earlier in this chapter, the operational testing times for the Utah Aspire Plus tests are: 45 minutes for English, 75 minutes for Reading, 75 minutes for Math, and 60 minutes for science. Students needing extra time fall into three categories: time and a half, double time, or triple time. After the spring 2022 test administration, student total testing time was analyzed for each test. Overall, students completed the assessments within the recommended testing times. Table 10 provides breakdowns of student testing time across the full range of testing times. In other words, the percentile rankings are of the amount of time in minutes students took to complete the respective test. More specifically, with the grade 9 English results for students testing using regular time (45 minutes), examination of the 95th percentile (P95) means that 95\% of students finished the test in 43 minutes or less.

Additional information is presented in Appendix B, which provides a graphical display (box-and-whisker plot) of student testing time for each test. Box-andwhisker plots present the same information at each respective quartile, where the middle 50% of the given distribution is the box, and the whiskers represent the bottom 25% and top 25% of the distribution. Dots represent outliers and reflect very few overall cases. Most outliers still for regular testers are within the time allotment for the subject. For example, the outliers for grade 9 English for regular testers are all below the 75-minute time threshold. Based on these data and plots, the evidence suggests students in general had enough time to complete each respective test within the given allotments.

Table 3.2. Student Testing Time for Spring 2022 Utah Aspire Plus

Subject	Grade	Group	Testing Time (minutes)										
			Descriptive Statistics					Percentiles					
			N	Minimum	Maximum	Mean	St. Dev.	P50	P75	P80	P85	P90	P95
English	9	Regular Time	41490	1	57	27	8	27	33	34	36	38	41
		Time and a Half	3973	1	67	31	14	30	40	42	45	49	56
		Double Time	351	2	85	36	16	36	47	49	54	57	63
		Triple Time	309	3	110	33	15	31	40	43	46	53	60
	10	Regular Time	38395	1	50	26	9	26	32	33	35	38	41
		Time and a Half	3681	2	67	30	14	29	38	41	44	49	56
		Double Time	269	4	88	31	15	29	39	43	46	52	59
		Triple Time	189	3	91	31	15	31	36	39	43	49	59
Reading	9	Regular Time	41657	1	75	47	16	47	58	61	63	67	71
		Time and a Half	3873	1	112	44	23	41	57	62	68	75	88
		Double Time	358	2	149	46	25	41	58	66	72	77	100
		Triple Time	311	3	203	40	24	37	51	55	61	72	81
	10	Regular Time	38485	1	100	40	15	40	50	53	56	60	65
		Time and a Half	3658	1	112	40	22	39	53	57	61	68	80
		Double Time	273	2	149	37	24	33	48	53	60	68	78
		Triple Time	187	2	124	34	21	31	41	46	54	62	73
Math	9	Regular Time	40556	1	74	50	15	51	62	64	67	69	72
		Time and a Half	3819	1	112	45	23	43	60	64	69	76	87
		Double Time	348	2	148	51	27	47	66	71	75	83	102
		Triple Time	293	3	140	45	23	44	57	61	66	71	87
	10	Regular Time	37758	1	74	44	17	45	57	60	63	67	71
		Time and a Half	3567	1	112	40	22	38	54	58	63	69	81
		Double Time	269	2	145	48	25	47	62	65	71	77	92
		Triple Time	182	5	135	40	22	38	55	58	63	69	75
Science	9	Regular Time	41431	1	59	33	12	33	41	43	45	48	53

Subject	Grade	Group	Testing Time (minutes)										
			Descriptive Statistics					Percentiles					
			N	Minimum	Maximum	Mean	St. Dev.	P50	P75	P80	P85	P90	P95
		Time and a Half	3924	1	89	31	17	29	40	44	48	53	61
		Double Time	362	3	116	34	18	32	45	49	53	59	65
		Triple Time	309	3	113	34	16	33	42	46	50	54	62
	10	Regular Time	38085	0	59	27	13	27	36	38	41	45	50
		Time and a Half	3667	1	89	26	17	23	36	39	43	49	57
		Double Time	272	2	106	29	18	27	37	39	42	48	57
		Triple Time	188	1	82	24	14	24	32	34	37	40	47

4. Classical Item Analyses

4.1 Item Analyses

In the Test Development chapter, statistical indices used in the test construction process were introduced. To build the initial test forms for Utah Aspire Plus, item statistics based on use within the SAGE and ACT Aspire tests served to guide test construction activities. As noted, while the best initial forms were created, there were instances in which not all statistical targets were fully met. This section describes in more detail those classical item statistics. Additionally, after the Utah Aspire Plus 2018-2019 operational administration, classical item statistics were also calculated and results are presented in Appendix C.

4.1.1 p-Value and Item Mean Scores

Item difficulty offers an index of how easy or hard a given test question is to answer correctly or to earn a given score point for items scored according to a rubric. For dichotomously scored items (items scored correct or incorrect), item difficulty is indicated by its p-value, which is the proportion of test takers who answered that item correctly. The range for p-values is from 0 to 1 .

For polytomously scored items (items scored according to a rubric with multiple points awarded), difficulty is indicated by the mean item score. Here the average ranges from 0 to the maximum total possible points for an item. To facilitate interpretation, the mean item values for polytomously scored items can also be expressed on the p-value metric as percentages of the maximum possible score.

4.1.2 Item-Test Score Correlations

Correlations between a given item score and total test score are used to evaluate how well items differentiate between "high" and "low" performing students. In general, the higher the correlation the better an item is at differentiating between high- and low-performing students. As this index is a correlation, it ranges from -1 to +1 (where +/- 1 reflects a perfect correlation and 0 reflects no correlation). When the correlation is negative, it means low-performing students on the test are answering the given question correctly more often than high-performing students, and this would be a reason to further investigate the item for potential flaws.

In addition to the correlation between item score and total test score, the same approach can be applied to each answer option of multiple-choice items. Although not provided in Appendix E, this information is used within the context of data
review and allows for further evaluation of the full functioning of multiple-choice items, as it focuses on the effective functioning of the options (distractors) which are other than the correct answer.

4.1.3 Differential Item Functioning

Differential item functioning (DIF) exists when an item functions differentially across identifiable subgroups (e.g., gender or ethnicity) where students are matched on ability (meaning comparisons are made between students of the same ability, so differences are not attributable to overall group performance differences). In this context, DIF may indicate an issue with fairness or that the item may be measuring something other than the intended construct (i.e., possible evidence of DIF). It is important, however, to recognize that item performance differences flagged for DIF might be related to actual differences in relevant knowledge or skills (item impact) or statistical Type I error. As a result, DIF statistics are used to identify potential biases. Subsequent reviews by content experts and bias/sensitivity committees are required to determine the source and meaning of performance differences.

There are multiple statistical procedures for analyzing DIF, one of which is based on the Mantel-Haenszel chi-square statistic ($\mathrm{M}-\mathrm{H} \chi^{2}$) for multiple-choice items (Holland and Thayer, 1988). The chi-square statistic determines whether the odds of a correct response on an item is the same for both focal and reference groups, across all levels of proficiency. The Mantel-Haenszel odds ratio (α_{M-H}) is the odds of a correct response of the reference group divided by the odds of a correct response of the focal group. Data for these Mantel-Haenszel procedures are drawn from 2-by-2-by-k (score levels) contingency tables, for each item. As shown in Table 11 the number of focal and reference group members scoring in each possible item response is captured.

Table 4.1. Item 2×2 Contingency Table for the kth Score Level

	Item Score		
Group	Correct (1)	Incorrect (0)	Total
Focal (f)	$n_{f i k}$	$n_{f 0 k}$	$n_{f k}$
Reference (r)	$n_{r ı k}$	$n_{r o k}$	$n_{r k}$
Total (t)	$n_{t ı k}$	$n_{t 0 k}$	$n_{t k}$

For classifications of DIF, the Mantel-Haenszel Delta DIF statistic (MHD: Dorans \& Holland, 1993) is computed from the Mantel-Haenszel odds ratio and used in conjunction with $\mathrm{M}-\mathrm{H} \chi^{2}$ to classify items into three categories distinguishing
magnitudes of DIF: negligible DIF (A), moderate DIF (B), and large DIF (C). Classification is based on the following guidelines:

- M-H χ^{2} not significantly different from 0 or $|\mathrm{MHD}|$ less than 1 results in a classification of A.
- M-H χ^{2} significantly different from 0 and \mid MHD | at least 1 but less than 1.5 or $\mathrm{M}-\mathrm{H} \chi^{2}$ not significantly different from 0 and $|\mathrm{MHD}|$ greater than 1 results in a classification of B.
- M-H χ^{2} significantly different from 0 and $|M H D|$ at least 1.5 results in a classification of C.

In addition to these classifications, notation of DIF includes a positive (+) sign, indicating that the item favors the focal group, or a negative (-) sign, indicating that the item favors the reference group. Items that are designated with "B" or "C" DIF classifications are recommended for review before continued use on assessments.

The standardized mean difference (SMD: Zwick, Donoghue, and Grima, 1993) procedure is also used for detecting DIF, for items worth more than one point. SMD is a summary statistic used as an effect size estimate comparing the mean item score between the reference and focal groups (the two groups being compared). Although the numerical result of this statistical procedure is different from the M-H statistics, the classification of the results is the same-the results are classified into three categories indicating the magnitude of DIF with additional notation indicating the favored group.

4.2 Classical Item Summaries for Operational Administration

As noted, summaries of classical item statistics from the initial operational administration of Utah Aspire Plus are located in Appendix C. Examination of the distribution of items by difficulty across each test shows that items do vary in difficulty across each test, with most items between 0.30 and 0.75 . There are items that did fall outside the guidelines outlined previously, which was necessary to meet blueprints given limitations to the available item banks. The same can be said of the distributions of item-total correlations and DIF results, where there were items included in the tests that fell outside the guidelines but were ultimately included on final forms as the best available. Overall, even where items fell outside the guidelines, they were still useful. This was particularly true for the science assessments, where due bank limitation and cluster design, some very difficult items and items with low discrimination were included on final operational forms to help hit blueprint targets.

5. Reliability

Estimation of reliability of a given assessment is critical in order to understand the precision of measurement for individual test scores. Test score reliability estimates are typically provided in both a classical as well as an item response theory (IRT) context. Classical reliability estimates such as standard error of measurement (SEM) or Cronbach's alpha are reliability measures of internal consistency. Where classical approaches are generally single indicators for a given assessment, IRT reliability reflects precision across the ability spectrum. There are a number of different approaches available to estimate reliability of test scores. For Utah Aspire Plus tests, both classical reliability and reliability within an item response theory framework were computed.

5.1 Classical Definition of Reliability

The basis of classical test theory is premised on the idea that a person's observed score is the sum of their true score (measured without error and not directly observable) plus error:

$$
\text { Observed Score }=\text { True Score }+ \text { Error. }
$$

It provides a means of describing the quality of test scores through the interplay of these three elements. Arguably the most important descriptor is the concept of the reliability of test scores, where the reliability of observed scores is defined as follows:

$$
\text { Reliability }=\frac{\sigma_{T}^{2}}{\sigma_{O}^{2}}=\frac{\sigma_{T}^{2}}{\sigma_{T}^{2}+\sigma_{E}^{2}}=1-\frac{\sigma_{E}^{2}}{\sigma_{O}^{2}}
$$

where σ_{T}^{2} is the true score variance, σ_{O}^{2} is the observed score variance, and σ_{E}^{2} is the error variance. When there is no error, the reliability is the true score variance divided by true score variance, which is unity. However, as more error influences the measure, the error component in the denominator of the ratio increases and the reliability decreases.

5.2 Classical Test Theory Reliability Estimates

5.2.1 Cronbach's Alpha

Internal consistency methods use a single administration to estimate test score reliability. For state assessments where student testing time is at a premium, internal consistency procedures have a practical advantage over reliability estimation procedures requiring multiple tests. Probably the most frequently used internal consistency reliability estimate is the coefficient alpha (Cronbach, 1951).

Coefficient alpha assumes that inter-item covariance constitutes true-score variance and the fact that the average true score variance of items is greater than or equal to the average inter-item covariance. The formula for the coefficient alpha is

$$
\alpha=\left(\frac{N}{N-1}\right)\left(1-\frac{\sum_{i=1}^{N} s_{Y_{i}^{2}}^{2}}{s_{X}^{2}}\right),
$$

where N is the number of items on the test, $s_{Y_{i}}^{2}$ is the sample variance of the $i^{\text {th }}$ item (or component), and s_{X}^{2} is the observed score sample variance for the test. Coefficient alpha reliability estimates are provided in Appendix D for the overall testing population as well as by gender, ethnicity, and other student breakout groups. In addition, they are also provided by each reporting category (though again it should be noted that currently, only overall scores are reported on individual student reports, and no subscores are reported).

5.2.2 Standard Error of Measurement

A reliability coefficient expresses test score consistency in terms of variance ratios. In contrast, the standard error of measurement (SEM) expresses score inconsistency (unreliability). The SEM is an estimate of how much error there is likely to be in an individual's observed score, or alternately, how much score variation would be expected if the individual were tested multiple times with equivalent forms of the test. The SEM is calculated using the following formula:

$$
S E M=s_{x} \sqrt{1-\rho_{X X}},
$$

where s_{x} is the standard deviation of the total test (standard deviation of the raw scores) and $\rho_{x x}$, is a reliability estimate for the set of test scores. Test standard errors of measurement are provided in Appendix F and are presented on the Utah Aspire Plus scale score metric ($s_{x}=25$).

5.3 IRT-Based Reliability

Where estimation of reliability is within a classical test theory frame, it should be noted that such measures are sample specific. Additionally, error estimates such as the SEM are group-level estimates that apply across test scores. And it is sometimes viewed as unrealistic that the size of errors would be unrelated to the "true scores" of examinees (identical for all).

For the Utah Aspire Plus, student scores are derived within an item response theory framework (IRT) through pattern scoring based on the three-parameter logistic (3PL) and two-parameter logistic (2PL) measurement models (these are more thoroughly described later in this report). Under the IRT model, measurement precision is
expressed as Conditional Standard Errors of Measurement (CSEM) and is equal to the inverse of the square root of the test information function across the ability continuum (see Hambleton and Swaminathan, 1985).

CSEMs depend upon both the unique set of items each student answers correctly and his or her estimated ability level (θ). Therefore, different students will likely have different CSEM values even if they have the same raw score and/or theta estimate. Each item contains a unique amount of information for a given ability level, which depends on each item's discrimination, difficulty, and pseudo-guessing parameters.

The conditional standard errors for Utah Aspire Plus tests are provided in Appendix E, each including a line indicating the scale score cut score for Proficient. Ideally, the lowest value of conditional standard error of measurement occurs at the location of Proficient.

5.4 Reliability of Performance Level Categorization

Every test administration will result in some error in classifying examinees. The concept of the SEM provides a mechanism for explaining how measurement error can lead to classification errors when cut scores are used to classify students into different achievement levels. For example, some students may have a true achievement level greater than a cut score. However, due to random variations (measurement error), their observed test score may be below the cut score. As a result, the students may be classified as having a lower achievement level. As discussed in the section on the SEM, a student's true score is most likely to fall into a standard error band around his or her observed score. Thus, the classification of students into different achievement levels can be imperfect, especially for the borderline students whose true scores lie close to achievement-level cut scores.

For the Utah Aspire Plus assessment, the levels of achievement are Below Proficient, Approaching Proficient, Proficient, and Highly Proficient. A description and analysis of classification accuracy and consistency indices are provided below.

5.4.1 Accuracy and Consistency

Accuracy refers to the extent to which achievement decisions based on test scores match those that would be made if the scores did not contain any measurement error-"true scores." Since true scores are not available, an estimate of the true score distribution must be determined for classification accuracy to be estimated. Consistency, on the other hand, refers to the extent to which achievement classification decisions based on test scores match the decisions based on a second, parallel form of the same test. This index assumes that two parallel forms of the same test are administered to the same group of students. In Utah, however,
this is impractical. Livingston and Lewis (1995) developed techniques to estimate both accuracy and consistency that overcome the constraints of true scores and multiple test forms on the same students. These procedures are used to generate accuracy and consistency indices on the Utah Aspire Plus assessments.

5.4.2 Calculating Accuracy

To calculate accuracy, a 4×4 contingency table is created for each subject area and grade. The $[x, y]$ entry of an accuracy table represents the estimated proportion of students whose true score fall into performance level x and whose observed scores fall into performance level y. Table 5.1 is an example of an accuracy table where the columns represent test-based student achievement and the rows represent true achievement-level decisions. In this example, the total accuracy is approximately 75%, the sum of the diagonal (shaded) cells.

Table 5.1. Example Accuracy Classification Table

	Observed Score				
True Score	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	Total
Below Proficient	0.117	0.034	0.000	0.001	0.152
Approaching Proficient	0.019	0.161	0.061	0.002	0.243
Proficient	0.000	0.034	0.294	0.061	0.389
Highly Proficient	0.000	0.000	0.036	0.179	0.215
Total	0.136	0.229	0.391	0.243	1.000

It is useful to consider decision accuracy based on a dichotomous classification of Below Proficient or Approaching Proficient versus Proficient or Highly Proficient because Utah uses Proficient and above as proficiency for accountability decision purposes as well as for an index tracking students' readiness to college and careers. To compute decision accuracy in this case, the table is dichotomized by combining cells associated with Below Proficient and Approaching Proficient and combining Proficient with Highly Proficient. The sum of the shaded cells in

Table 5.2 indicated classification accuracy around the Proficient cut point of approximately 90%. The percentage of examinees incorrectly classified as Approaching Proficient or lower, when their true score indicates Proficient or above, is approximately 3%.

Table 5.2. Example Accuracy Classification Table for Proficient Cut Point

	Observed Score				
True Score	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	Total
Below Proficient	0.117	0.034	0.000	0.001	0.152
Approaching Proficient	0.019	0.161	0.061	0.002	0.243
Proficient	0.000	0.034	0.294	0.061	0.389
Highly Proficient	0.000	0.000	0.036	0.179	0.215
Total	0.136	0.229	0.391	0.243	1.000

5.4.3 Calculating Consistency

Consistency can be calculated in the same manner, via 4×4 contingency table, albeit with data indicating an estimate of the joint distribution of classifications on (hypothetically) two independent, parallel test forms. Table 5.3 shows sample statistics of consistency classification. Based on this sample data, the overall consistency is approximately 67%. The consistency at Proficient is 87%. The agreement rates are lower than those for accuracy because both classifications contain measurement error; whereas in the accuracy table, true score classification is assumed to be without error.

Table 5.3. Example Consistency Classification Table

	Second Form				
First Form	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	Total
Below Proficient	0.111	0.043	0.009	0.001	0.164
Approaching Proficient	0.019	0.147	0.073	0.004	0.243
Proficient	0.006	0.038	0.252	0.075	0.371
Highly Proficient	0.000	0.002	0.056	0.163	0.221
Total	0.136	0.230	0.390	0.243	1.000

5.4.4 Calculating Kappa

Another way to express overall consistency is to use Cohen's kappa (κ) coefficient (Cohen, 1960), which assesses the proportion of consistent classifications beyond chance. The coefficient is computed using

$$
\kappa=\frac{P-P_{c}}{1-P_{c}}
$$

where P is the proportion of consistent classifications and P_{c} is the proportion of consistent classification by chance. Using Table 14, P is the sum of the shaded cells whereas P_{c} is

$$
\sum_{x} C_{x .} C_{x}
$$

where C_{x} is the proportion of students whose observed performance level would be x on the first form, and C_{x} is the proportion of students whose observed performance level would be x on the second form. Therefore, the kappa coefficient using the data from Table 14 is 0.548 . Cohen suggested the Kappa result be interpreted as follows: values ≤ 0 as indicating no agreement and $0.01-0.20$ as none to slight, $0.21-0.40$ as fair, $0.41-0.60$ as moderate, $0.61-0.80$ as substantial, and 0.81-1.00 as almost perfect agreement. Estimates of classification accuracy and consistency indices-including kappa coefficients-for overall performance level classification and at the Proficient cut point are provided in Appendix F.

6. IRT Calibration, Equating, and Scaling

6.1 Overview

Item response theory (IRT) was used to create the base scales for the Utah Aspire Plus assessments. For the 2022 administration, IRT was used to place mathematics, reading, and English assessments onto their respective base scales through a process of equating. The new SEEds science assessment base scales were established this year using the same IRT methodology used in 2019 and will serve as the base for with future assessment will be compared to. After calibration and equating, the item parameters are used to compute a student's score in the IRT metric and then transformed to the final Utah Aspire Plus scale score reporting metric.

In this section of the technical report, the following topics related to IRT calibration, equating, and scoring are discussed:

- IRT Data Preparation
- Description of the Calibration Process
- Model Fit Evaluation Criteria
- Summary Statistics and Distributions from IRT Analyses
- Common-Item Non-Equivalent Groups Equating
- IRT Pattern Scoring

6.2 IRT Data Preparation

6.2.1 Student Inclusion/Exclusion Rules

The data preparation for the IRT calibration process began with all Utah students that were administered the "base" forms (i.e., online, English-language forms). Special handling for students taking the accommodation forms is discussed in a later section.

The samples for item parameter estimation included the following:

- Students from the online, English language test forms,
- Students with the same grade battery of tests, and
- Students with a valid test score status for all subject tests within a grade.

Students without a valid test score were excluded from calibration data.

6.2.2 Quality Control of the IRT Data Matrix Files

Student records in the calibration data files were ordered by ascending student identification number. In the case where field test forms are used (not applicable to Spring 2019), student records would first be sorted by form, then by student
identification number. The array of item responses were presented in the order as administered in the test form, including items that are presented in field test slots (placeholders for Spring 2019).

The IRT data matrices were created independently by two Pearson psychometric staff. The matrices were checked for accuracy by comparing numbering of students (counts) and the item response arrays. Any discrepancy found was resolved. Final calibration data files matched perfectly.

6.3 Description of the Calibration, Equating, and Scaling Process

6.3.1 IRT Models

Multiple item types are used on Utah Aspire Plus assessments and require multiple measurement models. Traditional multiple-choice items, with one correct answer, are analyzed via the three-parameter logistic model (3PLM; Birnbaum, 1968), denoted as

$$
p_{i}\left(\theta_{j}\right)=c_{i}+\frac{1-c_{i}}{1+e^{-D D_{i}\left(\theta_{j}-b_{i}\right)^{\prime}}}
$$

where $p_{i}\left(\theta_{j}\right)$ is the probability that student j would earn a score of 1 on item i, b_{i} is the difficulty parameter for item i, a_{i} is the slope (or discrimination) parameter for item i, c_{i} is the pseudo-chance (or guessing) parameter for item i, and D is the constant 1.7. Other selected response items worth one point (e.g., technologyenhanced items) are analyzed via the two-parameter logistic model (2PLM; Birnbaum, 1968), which is a reduced model from the 3PLM, where the pseudochance parameter, c, is assumed zero. Items worth two points were analyzed via the generalized partial credit model (GPCM; Muraki, 1992), denoted as

$$
p_{i m}\left(\theta_{j}\right)=\frac{\exp \left[\sum_{k=1}^{m} D a_{i}\left(\theta_{j}-b_{i}+d_{i k}\right]\right]}{\sum_{v=0}^{M_{i}-1} \exp \left[\left[a_{i}\left(\theta_{j}-b_{i}+d_{i v}\right)\right]^{\prime}\right.}
$$

where $a_{i}\left(\theta_{j}-b_{i}+d_{i 0}\right) \equiv 0, p_{i m}\left(\theta_{j}\right)$ is the probability of an examinee with θ_{j} getting score m on item i, and M_{i} is the number of score categories of item i with possible item scores as consecutive integers from 0 to $M_{i}-1$. In the GPCM, the d parameters define the "category intersections" (i.e., the θ value at which examinees have the same probability of scoring 0 and 1,1 and 2).

6.3.2 IRTPRO Calibration Procedures and Convergence Criteria

The primary goal of IRT calibration is to place the operational items from a given test onto a common scale. As noted, for mathematics, reading, and English, the additional step of equating was also completed to place these 2022 scores onto the
original base Utah Aspire Plus base scales respectively. Whereas for science, this was the first administration of Utah Aspire Plus SEEds assessments, and these calibrations resulted in the base scales to which future assessments will be related to.

Note that large enough samples are necessary to sufficiently estimate IRT parameters for a given test and across the respective models (generally for state summative tests similar to Utah Aspire Plus on order of 2,000). IRTPRO (Scientific Software International, Inc., 2017) was used to obtain the IRT parameter estimates using the measurement models described in the previous section. The software default estimation method, Bock-Aitkin (BAEM), was used for each calibration. The prior distributions for latent traits were set to a mean of zero and a standard deviation of one. The number of quadrature points used in the estimation was set to 49. For item parameters, a prior was placed on the lower asymptote (pseudochance) for the 3PLM: a normal distribution with a mean of -1.4 and a standard deviation of one. After calibration, convergence was checked.

To convert IRTPRO item parameters to the commonly used logistic parameter presentation, the a-parameter from the IRTPRO output needed to be converted since IRTPRO uses 1.0 for a scaling constant. The formula for this conversion is:

$$
a_{\text {new }}=\frac{a_{\text {irtpro }}}{1.7}
$$

6.3.3 Calibration Quality Control

IRT calibrations were conducted independently by two Pearson psychometric staff using the same software program. All item parameters from both independent calibrations were compared. Item fit plots were generated as further analyses of reasonableness and support of decisions of items' future use.

6.3.4 Equating

A common item non-equivalent groups approach (Kolen and Brennan, 2014) was used for equating operational forms for the Utah Aspire Plus mathematics, reading, and English assessments. Each form from the 2022 administration contains a set of items that are the same as appeared on the respective 2019 forms. These common (anchor) sets of items for Utah Aspire Plus were selected to represent a given blueprint in terms of content and each were roughly 20 percent or more of a full form.

The Stocking and Lord (1983) test characteristic curve methodology was used to derive equating constants for each grade-subject test. Using the 2019 IRT item parameter estimates for each of the Utah Aspire Plus anchor sets and the respective item parameter estimates from the 2022 administration described in the previous section, were used to obtain transformation constants. This was conducted using the computer program STUIRT (Kim \& Kolen, 2004). Procedurally this was carried out in conjunction with an anchor item stability check procedure (described next) that resulted in a final set of transformation constants that were then applied to all 2022 calibrated items to complete the respective equating. Once completed, items and scores were on the original base Utah Aspire Plus reporting scales.

A critical step in carrying out an equating is to evaluate the anchor items for stability in relation to its banked item characteristics. Items that deviate substantively in relation to the entire set of anchor items may be removed from contributing to the final equating solution. For Utah Aspire Plus, the item parameter stability check for the anchor items was conducted using classical item analyses, scatter plots of item parameter estimates, and item-characteristic curve (ICC) comparison. For the ICC comparison, old and new ICCs were compared using the zscore approach based on D^{2} (Wells, Hambleton, Kirkpatrick, \& Meng, 2014) as outlined below:

1. Obtain the theoretically weighted estimated posterior theta distribution using 31 quadrature points (-5 to 5).
2. Compute the slope and intercept constants using Stocking and Lord in STUIRT with all anchor items in the linking set.
3. Place the original anchor item parameter estimates onto the baseline scale by applying the constants obtained in Step 2.
4. For each anchor item, calculate D^{2} between the ICCs based on old (x) and new (y) parameters at each point in this theta distribution:

$$
D_{i}^{2}=\sum^{k}\left[P_{i x}\left(\theta_{k}\right)-P_{i y}\left(\theta_{k}\right)\right]^{2} \bullet g\left(\theta_{k}\right)
$$

where $i=$ item, $x=$ old form, $y=$ new form, $k=$ theta quadrature point, and $g=$ theoretically weighted posterior theta distribution.
5. Flag items with a D^{2} greater than $2 x$ the standard deviation of the D^{2} values.
6. Examine the impact of removing a flagged item on the content representativeness of the resulting anchor set. A flag alone is not the sole criteria for removing an item from the anchor set. It is important to also make sure that the remaining anchor set continues to be representative of the overall content and structure of the test.

Scatterplots of the common items can be found in Appendix G. Overall, item functioning of common items can be described as typical and stable. No more than one item in any of the common item sets were removed from final linking solutions. Scatterplots and correlations of IRT difficulty and discrimination parameters were highly related, where the lowest correlation on any set was . 96 and the remaining were roughly .99. Final Stocking and Lord scaling constants used for placing tests onto the Utah Aspire Plus base scales are presented in Table 15.

Table 6.1. 2022 Final Stocking and Lord Scaling Constants

Subject	Grade	Slope	Intercept
	9	1.027	-0.245
	10	1.038	-0.125
Reading	9	1.030	-0.135
	10	1.016	-0.155
Math	9	1.016	-0.126
	10	1.011	-0.263
Science	9	1.053	-0.093
	10	1.027	

6.4 Model Fit Evaluation Criteria

The Q_{1} statistic (Yen, 1981) was used as an index of correspondence between observed and expected performance. To compute Q_{1}, first the estimated item parameters and student response data (along with observed item scores) were used to estimate student ability ($\widehat{\theta}$). Next, expected performance was computed for each item using students' ability estimates in combination with estimated item parameters. Differences between expected item performance and observed item performance were then compared at 10 intervals across the range of student achievement (with approximately the same number of students per interval). Q_{1} was computed as a ratio involving expected and observed item performance. Q_{1} is interpretable as a chi-squared $\left(c^{2}\right)$ statistic, which can be compared to a critical chisquared value to make a statistical inference about whether the data (observed
item performance) were consistent with what might be observed if the IRT model was true (expected item performance). Q_{1} is not directly comparable across different item types because items with different numbers of IRT parameters have different degrees of freedom ($d f$). For that reason, a linear transformation (to a Z score, $Z_{Q_{1}}$) was applied to Q_{1}. This transformation also made item fit results easier to interpret and addressed the sensitivity of Q_{1} to sample size.

To evaluate item fit, Yen's Q_{1} statistic was calculated for all items. Q_{1} is a fit statistic that compares observed and expected item performance. MAP (maximum a posteriori) estimates from IRTPRO were used as student ability estimates. For dichotomous items, Q_{1} was computed as

$$
Q_{1 i}=\sum_{j=1}^{j} \frac{N_{i j}\left(o_{i j}-E_{i j}\right)^{2}}{E_{i j}\left(1-E_{i j}\right)},
$$

where $N_{i j}$ was the number of examinees in interval (or group) j for item $i, O_{i j}$ was the observed proportion of the students for the same cell, and $E_{i j}$ was the expected proportions of the students for the same interval. The expected proportion was computed as

$$
E_{i j}=\frac{1}{N_{i j}} \sum_{a \in j}^{N_{i j}} P_{i}\left(\hat{\theta}_{a}\right),
$$

where $P_{i}\left(\hat{\theta}_{a}\right)$ was the item characteristic function for item i and students a. The summation is taken over students in interval j.

The generalization of Q_{1} for items with multiple response categories is

$$
\text { Gen } Q_{1 i}=\sum_{j=1}^{10} \sum_{k=1}^{m_{i}} \frac{N_{i j}\left(o_{i k j}-E_{i k j}\right)^{2}}{E_{i k j}}
$$

where

$$
E_{i k j}=\frac{1}{N_{i j}} \sum_{a \in j}^{N_{i j}} P_{i k}\left(\hat{\theta}_{a}\right)
$$

Both Q_{1} and generalized Q_{1} results were transformed to $Z Q_{1}$ and were compared to a criterion $Z Q_{1, \text { crit }}$ to determine acceptable fit. The conversion formula was

$$
Z Q_{1}=\frac{Q_{1}-d f}{\sqrt{2 d f}}
$$

and

$$
Z Q_{1, c r i t}=\frac{N}{1500} * 4,
$$

where $d f$ is the degrees of freedom. The degrees of freedom is equal to the number of independent cells less the number of independent item parameters. For example, the degrees of freedom for polytomous items equals [10 \times (number of score categories - 1) - number of independent item parameters]. For the GPCM, the number of independent item parameters equals 1 (for the a-parameter) plus the number of step values (e.g., for an item scored 0, 1, 2: there are 2 independent step values-the b parameter is simply the mean of the step values and is not, therefore, independent).

As noted, item fit plots were produced and reviewed in addition to Q_{1}. Upon inspection, item plots were reasonable and did not suggest model selection was a concern in any instance. Very few items were flagged during the Q_{1} analyses, which was consistent with the item plots. Of those items that were flagged, for English, the grade 9 item flagged for misfit was a short text-entry items on Conventions of Standard English. In grade 10, 3 flagged items were Conventions of Standard English Items. One was a TE match interaction; two were drop-down select items. The final flagged item as an ACT MC item. For Reading, most of the items flagged for misfit were evidence-based selected response (EBSR) items. These are two-part items where students' response to Part B should depend on the response to Part A. Students can only get credit for Part B if Part A is correct. There were five such items flagged in grade 9 and four flagged items in grade 10. The remaining flagged items were a mixture of technology-enhanced type and multiple-choice items. For Mathematics, of the grade 9 items that were flagged, one was a multi-select item, one was an equation editor, and one was multiple-choice. The grade 10 item was a multiple-choice item. The grade 9 Science items was a two-part EBSR items that required a correct response to Part A to receive credit on Part B. A total of 7 items were flagged for grade 10 science. Most of these items were statistically close to having adequate model fit. Of the items flagged, 3 were two-part EBSR items, 2 were multi-select items and 2 were multiple-choice items.

6.5 Steps Taken to Ensure Stability of 2022 Equating

Given the extraordinary circumstances faced by schools and districts to carry out instruction in the face of the continued global pandemic, there were countless questions around how to help guarantee that assessments were not only carried out as closely as possible to how they were previously (in 2019 and 2021), but also around how to prepare to maintain score scales in the face of substantive differences to instruction and participation. As a result, there were several steps
that were taken to identify and overcome potential negative impacts to the equating work.

The first concern was the representativeness of the testing populations. Evaluation of this was carried out by comparing demographic level characteristics from testers to the overall population characteristics (sex, race/ethnicity, English language learner, economically disadvantaged status, students with disabilities). While overall numbers of testers was comparable to the number tested in 2019, (plus or minus approximately 1000 students), the demographics of the population characteristics matched to within 2 percent across all demographic groups and were deemed reasonably comparable. Additional inspection of regional representativeness did not suggest concerns were warranted and the equating work moved forward. It should also be noted that one of the most notable attributes of relying on item response theory as a means of scale score systems is that the methodology is not dependent on the underlying population of students responding to test questions. This attribute further supported the decision to proceed with the equating process.

Secondly, there was some concern that if instruction were incomplete (for example if not all standards were taught), then it was possible that common items measuring those standards could be directly impacted and need to be removed from contributing to equating. Beyond the direct impact to a given anchor item set, an additional concern was that of the anchor set potentially not reflecting the overall test characteristics from a content standpoint. Examination of anchor item functioning is described above and was found to be stable in all instances compared to functioning in 2019. Special emphasis was also placed on evaluation of any groupings of items that might indicate a negative opportunity to learn effect and warrant closer scrutiny. None were identified.

6.6 Summary Statistics and Distributions from IRT Analyses

Tables 6.2 and 6.3 present the summary statistics for the IRT ($a-$, and b-) parameter estimates, and standard errors (SE) of the parameter estimates, and model fit information for the spring 2022 operational items. The summary statistics shown include the total number of items, along with the mean, standard deviation (SD), minimum, and maximum. As mentioned previously, exceptions were made in science in finalizing operational form selection. As such, one item in both grade 9 and 10 with extreme difficulty parameters were included to better meet blueprint targets.

Table 6.2. IRT Summary Parameter Estimates for Utah Aspire Plus Operational Items

Grade	Subject	No. of Items	Summary of a Estimates				Summary of b Estimates			
			Mean	SD	Min	Max	Mean	SD	Min	Max
9	English	46	0.80	0.36	0.17	1.65	-0.36	1.29	-2.58	3.16
	Reading	35	0.71	0.35	0.19	1.40	0.38	1.29	-1.25	5.56
	Mathematics	40	1.06	0.38	0.52	2.09	0.22	0.84	-1.79	1.77
	Science	23	0.72	0.27	0.21	1.17	0.16	0.64	-0.83	1.60
10	English	44	0.93	0.42	0.28	2.03	-0.39	0.96	-1.79	2.06
	Reading	35	0.89	0.46	0.25	2.33	-0.19	0.95	-1.80	2.89
	Mathematics	40	1.08	0.27	0.48	1.53	0.32	0.80	-1.47	1.55
	Science	23	1.01	0.70	0.26	3.11	0.71	0.71	-0.02	2.65

Table 6.3. IRT Standard Errors of Parameter Estimates for Utah Aspire Plus Operational Items

Grade	Subject	No. of Items	SE of a Estimates				SE of b Estimates			
			Mean	SD	Min	Max	Mean	SD	Min	Max
9	English	46	0.034959	0.022029	0.0109	0.1266	0.033767	0.028089	0.0107	0.1313
	Reading	35	0.034246	0.02116	0.0075	0.0838	0.038834	0.045455	0.0135	0.249
	Mathematics	40	0.041445	0.021869	0.0177	0.1026	0.02331	0.017449	0.008	0.0801
	Science	23	0.034596	0.018702	0.0077	0.0745	0.036022	0.038468	0.0103	0.1916
10	English	44	0.036932	0.021132	0.0097	0.104	0.024868	0.018011	0.0078	0.1031
	Reading	35	0.041723	0.029167	0.0075	0.1307	0.029977	0.0307	0.011	0.1834
	Mathematics	40	0.048978	0.017428	0.0155	0.0882	0.023425	0.015061	0.0096	0.0823
	Science	23	0.089813	0.183934	0.0097	0.9208	0.03043	0.018798	0.0152	0.0869

6.7 IRT Pattern Scoring

Item parameters derived from the IRT calibrations were used to estimate student ability ("theta") scores by item response patterns. This is commonly referred to as pattern scoring. Pattern scoring takes advantage of the fact that items differ in their item characteristics and that an estimate of a student's ability is based on their specific pattern of responses in combination to the item characteristics across all items.

The software package Operational Scoring: IRT Score Estimation (ISE V1.3.f; Chien \& Shin, 2012) was used to perform the pattern scoring process and provide student scores on the IRT metric, using the student scored responses and the item response theory (IRT) item parameters for the operational items.

Two data-driven input files are required to execute the ISE software: student response file and item parameter file. The ISE algorithm combines the NewtonRaphson and Brute Force algorithms to generate the maximum likelihood estimated (MLE) of theta values. Specific configuration details include setting the upper- and lower-bound theta estimates, in this case +4 and -4 , the number of iterations for the Newton-Raphson estimation method (30), the grid length interval for the Brute Force algorithm, the number of checking points for which the first derivatives are computed (120), and the number of decimal places for theta estimates (4).

IRT parameters derived for all 2022 Utah Aspire Plus operational items were used for estimating individual student scores for all regular forms.

6.7.1 Quality Control of IRT Scoring

IRT pattern scoring is replicated independently through two parties internally. This scoring was conducted at the overall test level as well as by reporting categories. Any differences are resolved and rerun until both parties' results are identical and deemed correct based on careful examination of output.

7. Score Reporting

7.1 Appropriate Uses for Scores and Reports

As discussed, test forms constructed for Utah Aspire Plus cover a sampling of content as specified through test blueprints and reflective of the Utah Core Standards. The resulting scores reflect overall performance for each content area based on expectations of students' knowledge at the end of grades 9 and 10. It should be noted that while each test covers the standards, there is a limit to incorporate everything (e.g., given test time limits). Test scores should only be interpreted and used in the context from which they are obtained. In other words, Utah Aspire Plus test scores should be used to describe student achievement on the content assessed (i.e., grade level) and not used to generalize achievement beyond the test. In addition, academic placement decisions and promotions should not be based solely on these test scores but should include other indicators of achievement.

The Individual Student Report (ISR) communicates an individual student's test scores and interpretations of achievement based on those scores The ISR provides the "snapshot" of achievement and explains the meaning of each piece of information provided, providing valuable information to students and parents. It is important that users of these reports do not extend the score information beyond the interpretations provided. A guide for understanding the ISR and its components can be found online. For the Utah Aspire Plus tests, overall scale scores, performance level indicators, and predicted performance ranges for the ACT tests are provided. Note that no subscores are currently reported on student ISRs.

7.2 Utah Aspire Plus Reporting Scale

Commonly derived scores based on IRT are transformed to a reporting scale that is more consumable by users. The IRT metric being logit-based results in ability estimates typically ranging from -3.0 to 3.0 and to the second or third decimal. Interpreting differences across logits can be cumbersome. So scores are transformed to larger values without fractions. These are generally called scale scores. The purpose of scale scores is to facilitate interpretation and to report scores for all test-takers on a scale that remains consistent across multiple years or forms, even if the overall difficulty of the test varies slightly. Scale scores ensure that the test results mean the same thing regardless of which year the test was administered.

For the Utah Aspire Plus scales, the IRT metric uses a linear transformation to provide the final reporting scales as such:

$$
S S=m \theta+b,
$$

where m is the slope, and θ is the IRT person proficiency estimate obtained through pattern scoring. Using this equation, a scale scored is transformed to the final reporting scale. The scale score metric for Utah Aspire Plus was chosen to range from 100 to 300 , for each test and composite score. This range allows for the assessment to differ from the previous and remaining scales, and the slope chosen to spread final scores enough to contain each respective score distribution without floor or ceiling effects and to be disperse enough to reasonably contain all transformed scores. The final transformation formula used for Utah Aspire Plus is:

$$
S S=\text { Theta } * 25+200 .
$$

This transformation provides the following characteristics: 1) the mean of the scale is 200,2) the standard deviation of the scale is 25,3) the lowest operating scale score (LOSS) is 100 , and 4) the highest operating scale score (HOSS) is 300 . Composite scores were also created for Utah Aspire Plus. A composite score representing English Language Arts (ELA) is the average of a student's Reading and English scale scores, whereas a composite score representing Science, Technology, Engineering, and Mathematics (STEM) is the average of a student's Mathematics and Science scale scores.

7.3 Standard Setting

Descriptions of student performance are often used to help enhance the reporting of student scores beyond an overall reported score and references to other students or groups of students. Performance levels and descriptions of performance divide the test scores into meaningful categories and align to performance ranging from low to high. For Utah, these categories are called Below Proficient, Approaching Proficient, Proficient, and Highly Proficient. Performance level descriptions (PLDs) accompany these labels to describe typical performance of students within each group.

Standard settings were conducted in August of 2019 (for all subjects) and again for science in August of 2022 following the first administration of the new assessment based on the SEEds. PLDs are the core of all standard setting meetings. The PLDs for the Utah Aspire Plus assessments can be found online.

Utah educators were convened to operationalize the PLDs through standard setting, a process of determining test score thresholds, or "cut points," to divide the test scores into the four performance groups. Final scale score cuts for science, English, reading and mathematics are presented in Table 7.1.

Table 7.1. Utah Aspire Plus Scale Score Cuts by Grade and Subject

Grade	Scale Score Cut Points			
		Approaching Proficient	Proficient	Highly Proficient
		165	202	242
9	English	Reading	166	204
10	Mathematics	172	206	231
	Science	187	211	233
	English	161	200	245
	Reading	175	204	235
	Mathematics	181	210	236

7.4 ACT Predicted Score Ranges

As noted, one of the goals of the Utah Aspire Plus assessments is to be predictive of college readiness at grades 9 and 10, and the means of this is in terms of providing prediction score ranges of performance on the ACT for the four subject tests (English, math, reading, and science) and the Composite score (the average of the four subject tests). Predicted ranges of performance were determined originally between ACT Aspire scores and ACT scores, where for a given ACT Aspire score, there was a distribution of related ACT scores. The bounds of the range were denoted by the scores closest to the 25th and 75th percentiles of the ACT score distribution, conditional on ACT Aspire scores. For Utah Aspire Plus, an additional error term was added to account for error attributable to linking the Utah Aspire Plus scores.

Students can use the predicted scores together with the ACT College Readiness Benchmarks to monitor their preparedness to be college-ready by the end of high school. Utah students take the ACT® during their junior year of high school. Specific details from the original prediction score studies can be found in the 2018-2019 Utah Aspire Technical Report.

In addition to relying on the relationship between the Utah Aspire Plus tests to the ACT Aspire scales for deriving the initial ACT prediction score ranges for the 2019 administration, the intention was to provide updated predictions based on longitudinal data as it becomes available. The updated ACT score ranges directly link the Utah Aspire Plus scores at grades 9 and 10 to ACT scores at grade 11. In spring 2020, the first longitudinal data was available for this purpose. The initial longitudinal Utah-to-ACT prediction studies were based on students who were in the 10th grade during the 2019 administration of the Utah Aspire Plus tests. The second longitudinal study was conducted in the spring of 2021. Details of this study can be found in the Appendix of the 2021 technical manual.

Appendix H provides the details of the third longitudinal study from spring 2022 to update the science grade 10 predictions. This study included students who were in 10th grade in 2021 and took the ACT as 11th grade students in spring 2022. Within it are described steps taken in evaluating the ACT samples in relation to previous administrations and efforts to improve predications based on a weighting procedure. Generally, these updated prediction score ranges are tighter than the original ranges derived indirectly through the ACT Aspire scales.

7.5 2021-2022 Utah Aspire Plus Performance Results

Descriptive statistics of the scale scores for each Utah Aspire Plus assessment are in Appendix I. The descriptive statistics are provided for the overall testing population, as well as by subgroups—gender, ethnicity, and special populations. Average scale scores as well as standard deviations, scores at the 25th, median, and 75th percentiles are also reported as well as skewness. Scale score distributions for each Utah Aspire Plus assessment are provided in Appendix J, for the overall testing population. Appendix K contains the performance level distributions of each Utah Aspire Plus. The tables contain the percentages of students being classified into each respective performance level.

While results can be compared directly to 2019 and 2021 performance within same subject and grade, extra cautions should be taken with respect to interpretations beyond high-level due to impacts from the pandemic. These opportunity-to-learn (OTL) impacts are multi-faceted and differential across the state.

While comparatively, a similar number of students were tested in 2022 as compared to 2019, the percent of completed tests varied. In 2019 completion rates for registered testers was approximately 91-93\%. In 2022, the completion rate
ranged from 84-88\%. There are various reasons why difference in performance could be magnified. And while generally speaking performance was lower this year compared to 2019, it's possible that results could be more marked if all eligible testers had participated and in ways that may not be obvious. For example, if it were shown that missing testers reflected a part of the overall population who would tend to score lower, it would mean performance results would appear better in turn (and vice versa). Additionally, there has been a trend in the state for increased parent-opt out. All of these reasons are important when making comparisons of student performance from one year to the next.

8. Quality Control

Quality control is a critically important element of every phase of the Utah Aspire Plus development, administration, and score reporting in ensuring the accuracy of student-, school- and district-level data. Pearson has developed and refined a set of quality procedures to help ensure that all USBE's testing requirements are met or exceeded. These quality control procedures are detailed in the paragraphs that follow. In general, Pearson's commitment to quality is incorporated in both taskspecific quality standards applied to processing functions and services as well as a network of systems and procedures that coordinate quality steps across functions and services.

8.1 Online Assessment Delivery

8.1.1 Item Validation

Test items for Utah Aspire Plus are housed in Pearson's Automated Banking and Building for Interoperability (ABBI) platform. ABBI supports building and publishing online and paper-based tests and drives creation of those forms to both Pearson's paper and online publishing systems. Through ABBI, item scoring configuration is validated during initial item review (i.e., at the time of item writing) as well as during forms development.

8.1.2 Test Administration

PearsonAccess is Pearson's next-generation system for managing student data, paper, and online test administration, scoring, and reporting high-stakes assessments. This system provides comprehensive support for paper and online testing either through a single sign-on destination or by interfacing with other systems to provide a highly adaptable solution. TestNav delivers online tests. The core functionalities of TestNav include delivering tests to students, collecting student responses, and returning the responses to Pearson for scoring.

TestNav provides advance warning of network issues that prevent sending student responses to the Pearson testing server. When the network is functioning normally, TestNav sends student responses to the Pearson testing server in real time, while the student is testing. If the student's device cannot connect to the Pearson servers, TestNav saves the response to an encrypted file and allows the student to continue testing. When the network connection is reestablished, the test proctor can upload
a student's saved responses to Pearson's testing server, and then TestNav erases the encrypted response file from the student's device or local network.

In the event of a non-network or non-Internet issue, such as a power outage or student device shutdown, student responses are saved to the encrypted file. When the student resumes testing, the system uploads the data in the file to the servers, and the student continues at the point in the test when the issue occurred.

As part of test security, test administrators control individual student authorization by printing and distributing testing tickets with each student's identifying information and unique log-in credentials. The student enters his or her log-in and password on the testing workstation to gain access to the test. To further secure the testing environment, a blacklist capability sends notifications when unapproved applications are running when the test is started. Once all blacklisted applications are shut down, TestNav starts in kiosk mode when a student signs into a secure test.

Kiosk mode locks down the testing computer or device, so the student cannot print, cut, or copy test content. Students cannot visit websites or access other installed applications not approved for use during the test.

8.1.3 Operational Monitoring

Pearson's operational monitoring practices and tools constantly verify that platforms remain available to users; that performance stays within acceptable limits; and that users do not encounter critical errors. The types of monitoring that Pearson performs to help keep testing on time and reduce the chance of interruptions include the following:

- Site Availability Monitoring - checking locations and providing alerts when response times or availability thresholds are crossed
- Synthetic User Monitoring - simulating key end-user actions (launching a test, logging into the administrative site, viewing reports, etc.) and running from several locations on the public internet
- End User Monitoring - analyzing page and click performance to verify that end users receive results in a reliable and timely manner
- Server Monitoring - collecting detailed metrics on server performance to gauge health
- Application Performance Monitoring - gathering detailed performance information about the health of Pearson's various assessment platforms
- Database Monitoring - using a variety of tools to watch performance in real time
- Event Monitoring and Real-Time Security Auditing - processing large volumes of machine-generated data in real time to look for trends, issues, or anomalies
- Systems Vulnerability Monitoring - monitoring multiple sources for newly identified vulnerabilities in systems and applications Pearson uses

8.2 Production System Testing

8.2.1 Functional Testing

Well before testing the entire system, Pearson engineers develop tests for each discrete software unit, and for small groups of related units. Debugging code is emphasized in the earliest stages of development, so during unit testing, each developer creates unique tests for code that has been written.

8.2.2 Integration Testing

Digital and traditional paper solutions require testing that is specific to its unique interactions and specifications. After testing each piece of component code, the behavior of the integrated parts is tested. In the first stage of integration testing, the testing is done at the base system level to verify and validate that the system components function together. The second stage of integration testing examines accuracy of the unique configuration to each administration specified in the contract.

Configuration requirements are the basis of our integration testing. This is documented, and test cases and results are maintained and verified prior to the final production scoring and reporting configuration, including item parameter files, keys, and cut scores.

8.2.3 Program Validation End-to-End Testing

After Product Testing approval, the Pearson Program Validation team uses a crosssystem end-to-end approach to validate the user interface, scoring, data files, and reports. This testing confirms that all data are consistent with customer requirements by emulating the customer experience throughout the program lifecycle.

The Program Validation team coordinates test-material processing (distribution and data collection) with the same operational areas that process live material during production. Where appropriate, there is a Production Sample Verification process,
which uses the first available student data as a final quality step before live production processing of materials to be distributed. An examination of the outputs verifies data are scored, aggregated, reported, and delivered accurately. After the Program Validation team approves, the delivery of code and configuration is moved to production.

8.2.4 Load Testing

To examine the system's expected performance during peak usage days, Pearson engineers will assemble the components and test the system under load conditions. During load testing, a period of peak production is modeled to identify any issues within the application that might be triggered by maximum activity. Load testing is performed several times per year so that the system can be scaled to meet anticipated customer demand in advance of when it is needed.

8.2.5 Performance Monitoring

Systems are constantly monitored for anomalous system behavior, with special care being taken during student testing cycles to provide the highest possible levels of availability and performance. Monitors watch for anomalous activity throughout the entire system, not just at the application or network layers. If suspicious activity shows up, the system triggers alerts to technical support staff for investigation and handling.

In addition to overall, system-wide monitoring for suspicious and anomalous system activity, systems are kept at current patch levels via a suite of tools to scan for vulnerabilities at the network, operating system, platform, and application layers.

8.2.6 Regression Testing

Core Regression Testing confirms that pre-existing functionality has not been adversely affected by changes introduced in a software update. The scope of regression testing is set up to match the changes that are being introduced into the systems by the implementation and testing teams. Regression testing is conducted for every release or patch that is created for our systems.

8.2.7 User Acceptance Testing

One of the testing steps includes the user acceptance test, which is performed by states. Pearson maintains a testing platform so that states can review system functionality prior to a production release.

The following steps are taken when designing the user acceptance testing plan:

1. Create release notes for all new or modified functionality.
2. Provide updated training and user documentation.
3. Review checklist and ask questions.
4. Provide user IDs and passwords to allow users to run tests on code along with associated documentation assisting users on the process and procedures.
5. Meet with users and share results to jointly establish appropriate action plans.

8.3 Reporting

From initial student data upload, through testing, data review, scoring, and reporting, Pearson completes multiple checks and confirms that all data are consistent with customer requirements. Quality Assurance (QA) tasks are part of the project schedule, which is built by working backwards from the reporting dates, to allow for QA work to flow effectively.

Solid requirements form the foundation of quality. USBE and Pearson collaborated to thoroughly and consistently document scoring and reporting requirements, so all involved have a clear understanding of desired results. Project management, product validation, reporting services, and Customer Data Quality (CDQ) teams also participated in requirements reviews to meet reporting requirements and provide accurate mockups.

All Utah Aspire Plus files go through a rigorous validation process as demonstrated by Pearson's comprehensive quality plan. The plan focuses on implementing test cases at the source of each activity, system, and process, thereby detecting defects at the earliest possible point. The impact, therefore, is minimized and resolution can be expedited. The mock data process has become a validation standard within Pearson. It demonstrates production readiness in advance of scoring and reporting actual student data.

CDQ uses industry-standard validation tools focusing on SAS, which allows Pearson the breadth and depth needed for large-scale, high-stakes assessment validation. Pearson's test plans and individual test cases target areas of historical risk (based on the knowledge of Utah Aspire Plus requirements and file layouts) to provide quality results.

8.4 Quality Control of Psychometric Processes

For all psychometric tasks, quality management is central to ensuring on-time and error-free results. Details of Pearson's quality and control procedures for all psychometric tasks conducted, to include test construction, calibration, equating,
scaling, field test analysis, data review, item bank creation and management, standard setting, and technical reporting, can be found in the Utah Aspire Plus 2018-2019 technical report.

9. Validity

The Standards for Educational and Psychological Testing, issued jointly by the American Educational Research Association (AERA), American Psychological Association (APA), and National Council on Measurement in Education (NCME) (2014), reports:

Validity refers to the degree to which evidence and theory support the interpretations of test scores for proposed uses of tests. Validity is, therefore, the most fundamental consideration in developing tests and evaluating tests. The process of validation involves accumulating relevant evidence to provide a sound scientific basis for the proposed score interpretations. (p. 11)

The purpose is not to validate the test itself but to validate interpretations of the test scores for specific uses. In that sense, then, test validation is not quantifiable but an ongoing process of evidence gathering beginning at initial conceptualization and continuing throughout the full cycle of an assessment. Every component of an assessment provides evidence in support of its validity, including design, content specifications, item development, and psychometric characteristics.

For the Utah Aspire Plus, operational test development and administration provided the chance to collect initial validity evidence based on test content and internal structure of the tests. Validation is the process of collecting evidence to support inferences from assessment results. As noted, the Utah Aspire Plus assessments are designed to measure the breadth and depth of the Utah Core Standards across all levels of student performance, to provide awareness of individual achievement in relation to stated performance expectations, and to provide evidence of whether students are on track for college and career readiness. The Utah Core Standards and the Intended Learning Outcomes for science define what students should know and be able to do by the end of each respective school year.

9.1 Evidence Based on Test Content

Content validity evidence addresses whether a given assessment adequately samples from the full given domain. Where the assessment is determined to be representative in terms of the standards and in the manner intended, it is said to have high content validity. For the Utah Aspire Plus assessments, they are designed to measure the Utah Core Standards broadly.

For the Utah Aspire Plus tests, design and blueprint specifications were developed in concert between USBE, Utah educators, and Pearson content experts well versed in the Utah Core Standards. As described in Chapter 2 of this report, item and stimulus development targets focused on the measurement of the Utah Core Standards (SAGE) and on providing predictive measures of college and career readiness (ACT Aspire). Blueprints reflect a policy definition of how the makeup of a given assessment is intended to reflect an appropriate sampling of the standards necessary to meet the underlying reporting claims reliably. USBE has published the Utah Aspire Plus blueprints publicly (http://utah.pearsonaccessnext.com/additionalservices/).

As described in the respective SAGE and ACT Aspire technical manuals noted in Chapter 2, all items were developed to measure the breadth of the Utah Core Standards or related standards. All items were rigorously scrutinized during the various expert content reviews, from initial creation through data review. These expert reviews check for the appropriateness of test items as aligned to the given standard, as measuring intended targets of measurement, appropriately aligned to a DOK level, and that vocabulary is appropriate for the given level, the content is accurate and straightforward, supporting graphics or stimuli are necessary to answer the question, and items are clear and concise. Further reviews check for cluing within the context of an item set or test form. Every item is also evaluated for fairness by bias and sensitivity committees who review the items for language, or content, that may be inappropriate or offensive to students, parents, or community members, or that contain stereotypical or biased references to gender, ethnicity, or culture. As noted, details of these procedures can be found in the respective technical manuals for SAGE and ACT Aspire referenced in Chapter 2 (see Volumes 2 and 4 of the 2016-2017 SAGE Technical Report and Chapter 2 of the ACT Aspire technical manual).

The process of developing the Utah Aspire Plus test design, development, and test construction is described, in Chapter 2 of this report, to include expert evaluation of the alignment of all content to the Utah Core Standards. As documented, USBE, Utah educators, Pearson, and the developers of the SAGE and ACT Aspire tests expended tremendous effort to ensure the Utah Aspire Plus tests are content-valid
and support the intended claims detailed in this report. Additionally, evidence of the content coverage is presented in Appendix A.

Also described in Chapters 2, Utah educators created and recommended performance level descriptors for the Utah Aspire Plus tests, which provide a description of typical end-of-grade performance expectations for each level of achievement in relation to the Utah Core Standards. The PLDs are descriptions of the knowledge and skills demonstrated by students in each performance category. Higher scores translate to a greater level of knowledge and skills demonstrated. There is a link between the PLDs and the knowledge and skills required to meet proficiency according to the standards.

PLDs are used to relate performance on Utah Aspire Plus tests to the Utah Core Standards through the process of standard setting. As described, content experts and stakeholders participated in standard setting in August 2019 for mathematics, reading and English. In August 2022, similar meetings were conducted in support of the new Utah Aspire Plus SEEds science tests. These committee set the cut scores that delineate the four overall levels of achievement on the Utah Aspire Plus tests. Evidence of these activities is presented in the context of student performance on the Utah Aspire Plus tests described in Chapter 7.

9.2 Evidence Based on Cognitive Process

Content comprising the Utah Aspire Plus assessments is specified by standard as well as DOK levels. "Depth of knowledge" (DOK), or cognitive complexity, refers to the cognitive demand associated with interacting with a given item/task. Levels of cognitive demand generally focus on the type and level of thinking and reasoning required to answer a given question correctly or earn the most points. For Utah Aspire Plus content, Webb's definitions of levels of cognitive demand (Webb, N. L., 2002) were used to define the DOK levels.

Evidence related to DOK for items developed to measure the Utah Core Standards is provided in volume 4 (Validity) of the SAGE 2016-2017 technical report. In Section 2.3.4, it is noted that the alignment of items by DOK also represents a structural model that can be evaluated using confirmatory factor analysis. Further, they present a confirmatory factor analytic approach to evaluating DOK, where each item is an indicator of a DOK-level first-order factor, and each DOK is in turn an indicator of subject area achievement. Further, in Section 2.4, they describe evidence related to cognitive processes for SAGE content as being "highly similar" to content from the Smarter Balanced assessments and proceed to cite several formal cognitive lab studies that evaluated several facets of items by type as well as across content area.

ACT Aspire content also targets DOK within their development where it's noted that the content reflects expectations that students need to think, reason, and analyze at high levels of cognitive complexity in order to be college- and career-ready and that items and tasks require sampling different levels of cognitive complexity with most targeted at upper levels. Their definition of DOK is like Webb's, assigned to reflect complexity of the cognitive process required, not the psychometric "difficulty" of the item.

Evidence of cognitive process is presented in Section 17.2.2 of their technical manual:
https://www.act.org/content/dam/act/unsecured/documents/2019/aspire/Aspire-Summative-Technical-Manual.pdf. Here it is noted that in the piloting of ACT Aspire CR items using think-aloud tasks, surveys, and interviews as providing evidence of process to intended targets.

9.3 Evidence Based on Internal Structure

Internal structure evidence shows the degree to which items and test components conform to the construct on which the proposed test score interpretations are based (AERA, APA, and the NCME, 2014). For example, the Utah Aspire Plus tests report overall scale scores for individual students as well as performance level indicators and ACT prediction ranges for English, reading, math, and science at grades 9 and 10. Internal structure validity evidence identifies the degree to which the item relationships conform to the overall scores and individual subscales. It should be noted that, while information is provided in the appendices examining the Reporting Categories as structural elements of design, the focus of evidence is intended to support the primary claim of each subject test as being unidimensional in nature and supportive of reporting a single overall scale score reflective of the given grade/subject Utah Aspire Plus assessment.

While individual items may each measure multiple elements of the standards and dimensions, they are crafted without dependencies on other items. As such, the tests are designed to be unidimensional and to measure the overall Utah Core Standards primarily. Assuming this holds true, it is appropriate to apply a unidimensional IRT model for calibrating and scaling the Utah Aspire Plus assessments. The IRT model application assumes that the domain being measured by the test is essentially unidimensional. To test this assumption, a principal components analysis is performed.
A general rule of thumb suggests that a set of items may represent as many factors as there are eigenvalues greater than 1 in this analysis because there is one unit of information per item and the eigenvalues sum to the total number of items.

However, a set of items may have multiple eigenvalues greater than 1 and still be sufficiently unidimensional for analysis within an IRT framework (Loehlin, 1987; Orlando, 2004). A scree plot is a convenient tool to examine results of factor analyses, as the resulting eigenvalues are plotted in order of magnitude. The scree plots for the principal component analyses for each subject and grade are provided in Appendix O .
In addition to the principal components analyses, confirmatory factor analyses were also conducted to test the model of one factor construct within the Utah Aspire Plus assessments. Indices of model fit are used to determine how well this model fits the data. McDonald and Ho (2002) define absolute fit indices as determining how well an a priori model fits the sample data. The chi-square statistic assesses the magnitude of discrepancy between the sample and fitted covariance matrices (Hu and Bentler, 1999). However, this statistic is sensitive to sample size and often rejects the model when large samples are used (Bentler and Bonnet, 1980).

Alternatives to the chi-square, the goodness-of-fit statistic (GFI: Jöresky and Sörbom, 1993), and adjusted goodness-of-fit (AGFI: Tabachnick and Fidell, 2007) are also sensitive to sample size, which has led to researchers reporting them along with other fit indices (Hooper, Coughlan, and Mullen, 2008).

The root mean square error of approximation (RMSEA), a comparative fit index, tells how well the model would fit the population covariance matrix (Byrne, 1998). This fit index favors parsimony since it is sensitive to the number of estimated parameters in the model. There have been a few suggestions of index threshold cut-offs of good fit. The most stringent criterion is 0.06 , as suggested in Hu and Bentler (1999). In addition, a confidence interval can be constructed for RMSEA, with a lower limit close to 0 signifying a well-fitting model as well as an upper limit less than 0.08.

The root mean square residual (RMR) and standardized root mean square residual (SRMR) are the square root of the difference between the residuals of the sample covariance matrix and the hypothesized covariance model. The SRMR has a range of 0 to 1 , with 0 indicating perfect fit. Byrne (1999) suggests well-fitting models having an SRMR less than 0.05. Hooper, Coughlan, and Mullen (2008) caution that SRMR will tend to be low with a high number of parameters and models with large sample sizes. Hu and Bentler (1999) suggested a two-index presentation when reporting model fit evaluation. One proposed combination is the RMSEA, with confidence interval, and the SRMR. The estimates of these indices are presented in Table 9.1.

Table 9.1. Model Fit Indices for Confirmatory Factor Analyses

Subject	Grade	SRMR	RMSEA	RMSEA 90\% Lower CL	RMSEA 90\% Upper CL
	9	0.0285	0.0314	0.0312	0.0317
	10	0.0299	0.0343	0.0340	0.0346
Reading	9	0.0183	0.0211	0.0208	0.0214
	10	0.0226	0.0271	0.0268	0.0275
Mathematics	9	0.0223	0.0257	0.0254	0.0260
	10	0.0227	0.0257	0.0254	0.0260
Science	9	0.0177	0.0236	0.0230	0.0241
	10	0.0219	0.0278	0.0273	0.0284

Model-data fit based on the IRT model calibrations are also indicators of unidimensionality. To the extent that indicators of fit suggest data do not appropriately fit the model as applied may be the result of multidimensionality. Discussion of model fit is presented in Chapter 6 with Q_{1} indices for all Utah Aspire Plus operational items. These statistics support the overall fit of Utah Aspire Plus items to the respective IRT models.
In addition to evidence of essential unidimensionality described here, it should be acknowledged that tests are not designed to be strictly unidimensional. It is common to observe what might be considered transient factors common to one or more test items in the face of a dominant overall factor. As discussed in Chapter 2, the Utah Aspire Plus blueprints were designed to reflect the Utah Core Standards partly around Reporting Categories. Correlations among the Utah Aspire Plus overall test scores and Reporting Categories offer additional evidence of the internal structure of the Utah Aspire Plus tests. These correlations quantify the strength of the relationships across structural elements of the assessments. Results of these analyses are presented in Appendix M.

9.3.1 Reliability

Additionally, the reliability analyses presented in Chapter 5 of this technical report provide information about the internal consistency of the Utah Aspire Plus tests. Internal consistency is typically measured by correlations among the items on a test and provides an indication of how much the items measure the same general construct.

9.4 Evidence Based on Different Student Populations

In addition, internal structure evidence should show that individual items are functioning similarly for different demographic subgroups within the population being measured. The Utah Aspire Plus tests are developed to assess the Utah Core Standards and are administered to all students irrespective of any particular demographic characteristic (as described in Chapter 2). Great care has been taken to ensure the items on the Utah Aspire Plus tests are fair and representative of the content domains expressed in the standards. Special attention is given to find evidence that construct-irrelevant content has not been inadvertently included in the test, as such content could result in an unfair advantage for one group versus another.

This begins with item writers trained on how to avoid economic, regional, cultural, and ethnic biases when writing items. After items have been written, they are reviewed by a bias and sensitivity committee, which evaluates each item to identify language or content that might be inappropriate or offensive to students, parents, or other community members or that contain stereotypical or biased references to gender, ethnic, or cultural groups. The bias and sensitivity committee accepts, edits, or rejects each item for use prior to the items' administration.

Differential item functioning (DIF) analyses are conducted for the purpose of identifying items that are differentially difficult for different subpopulations of individuals. Chapter 4 details the methodology used to evaluate DIF for the Utah Aspire Plus items. Though DIF analyses flag items as being differentially difficult for one group as compared to another, it does not solely provide sufficient evidence for removing the item from use. Flagged items are re-examined post administration for any potentially overlooked biases attributable to the content of those items.

9.5 Summary

As noted, the process of validation involves accumulating relevant evidence to provide a sound scientific basis for stated score interpretations. Collection of validity evidence is an ongoing process and validity of interpretations are strengthened as positive evidence accrues. While this technical report reflects the continued administration of the Utah Aspire Plus assessments, sufficient evidence exists to support the primary claims detailed herein, including that test scores indicate the degree to which students achieved end-of-year expectations on the Utah Core Standards across subject tests in grades 9 and 10. Further, performance on the Utah Aspire Plus assessments could reasonably be linked to predictions of performance on the ACT college and career readiness benchmarks. These are supported by evidence of the content development processes that underpin the
creation of assessments aligned to the Utah Core Standards and evidence that the internal structure aligns with the stated claims and is sound.

10. References

ACT Aspire. (2017). Summative Technical Manual. Version 3. Iowa City, IA: ACT.
American Educational Research Association, American Psychological Association, \& the National Council on Measurement in Education. Joint Technical Committee. (2014). Standards for Educational and Psychological Testing. Washington, DC: American Educational Research Association.

Bentler, P. M., \& Bonnet, TABLE D. C. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord and M. R. Novick (Eds.), Statistical Theories of Mental Test Scores (pp. 397-472). Reading, MA: Addison-Wesley.

Byrne, B. M. (1998). Structural Equation Modeling with LISREL, PRELIS and SIMPLIS: Basic Concepts, Applications and Programming. Mahwah, NJ: Lawrence Erlbaum Associates.

Chien, M. and Shin, TABLE D. (2012). IRT Score Estimation Program, V1.3 [computer program]. Iowa City, IA: Pearson.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-47.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334.

Cronbach, L. J. (1988). Five perspectives on validity argument. In H. Wainer \& H. Braun (Eds.), Test Validity (pp. 3-17). Hillsdale, NJ: Lawrence Erlbaum.

Dorans, N. J., \& Holland, P. W. (1993). DIF detection and description: MantelHaenszel and standardization. In P. W. Holland and H. Wainer (Eds.), Differential Item Functioning (pp. 35-66). Hillsdale, NJ: Lawrence Erlbaum Associates.

Holland, P. W., \& Thayer, TABLE D. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer and H. I. Braun (Eds.), Test Validity (pp. 129-145). Hillsdale, NJ: Lawrence Erlbaum Associates.

Hooper, TABLE D., Coughlan, J., \& Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6, 53-60.

Hu, L. T., \& Bentler, P. N. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.

Jöresky, K., \& Sörbom, TABLE D. (1993). LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. Chicago, IL: Scientific Software International Inc.

Kane, M. T. (2006). Validation. In R. L. Brennan (Ed.), Educational Measurement (4th ed., pp. 17-64). Westport, CT: American Council on Education/Praeger.
Kim, S. and Kolen, M. (2004). STUIRT [computer program]. Iowa City, IA: The University of Iowa.

Livingston, S. A., \& Lewis, C. (1995). Estimating the consistency and accuracy of classifications based on test scores. Journal of Educational Measurement, 32, 179-197.

Loehlin, J. C. (1987). Latent Variable Models. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.

McDonald, R. P., \& Ho, M.-H. R. (2002). Principles and practice in reporting statistical equation analyses. Psychological Methods, 7(1), 64-82.

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement 16, 159-176.

National Research Council. 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165.

Next Generation Science Standards (NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press) http://www. nextgenscience.org

Orlando, M. (2004, June). Critical issues to address when applying item response theory (IRT) models. Paper presented at the Drug Information Association, Bethesda, MTABLE D.

Scientific Software International, Inc. (2017). IRTPRO. Lincolnwood, IL:
www.ssicentral.com.
Tabachnick, B. G., \& Fidell, L. S. (2007). Using Multivariate Statistics (5th ed.). New York: Allyn and Bacon.

Wells, C. S., Hambleton, R. K., Kirkpatrick, R., \& Meng, Y. (2014). An examination of two procedures for identifying consequential item parameter drift. Applied Measurement in Education, 27, 214-231.

Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125-145.

Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educational Measurement, 30, 187-213.
Zwick, R., Donoghue, J. R., \& Grima, A. (1993). Assessment of differential item functioning for performance tasks. Journal of Educational Measurement, 30, 233251.

Appendix A: Test-Level Reporting Categories and Standards by Item Type and DOK

Table A. 1 Test-Level Reporting Categories and Standards for English

Grade	Reporting Category: Standard	Multiple Choice			Technology Enhanced		
		DOK 1	DOK 2	DOK 3	DOK 1	DOK 2	DOK 3
9	Conventions of Standard English: L.9-10.1	5	3	1	0	0	0
	Conventions of Standard English: L.9-10.1a	0	0	0	2	1	0
	Conventions of Standard English: L.9-10.1b	0	0	0	1	2	0
	Conventions of Standard English: L.9-10.2	5	0	0	0	0	0
	Conventions of Standard English: L.9-10.2a	0	0	0	2	0	0
	Conventions of Standard English: L.9-10.2b	0	0	0	1	0	0
	Conventions of Standard English: L.9-10.2c	0	0	0	2	0	0
	Conventions of Standard English: L.9-10.5b	0	0	0	1	1	0
	Conventions of Standard English: L.9-10.6	0	0	0	1	0	0
	Knowledge of Language: L.9-10.3	2	0	0	0	0	0
	Knowledge of Language: L.9-10.4a	2	0	0	0	0	0
	Production of Writing: W.9-10.4	0	0	0	1	0	0
	Production of Writing: W.9-10.5	0	0	0	1	0	0
	Total	46					
10	Conventions of Standard English: L.9-10.1	7	1	0	0	0	0
	Conventions of Standard English: L.9-10.1a	0	0	0	2	0	0
	Conventions of Standard English: L.9-10.1b	0	0	0	2	0	0
	Conventions of Standard English: L.9-10.2	4	0	0	0	0	0
	Conventions of Standard English: L.9-10.2a	0	0	0	3	0	0
	Conventions of Standard English: L.9-10.2b	0	0	0	1	0	0
	Conventions of Standard English: L.9-10.2c	0	0	0	1	0	0
	Conventions of Standard English: L.9-10.5a	0	0	0	1	0	0
	Conventions of Standard English: L.9-10.5b	0	0	0	1	2	0
	Knowledge of Language: L.9-10.3	5	0	0	0	0	0
	Knowledge of Language: L.9-10.4b	0	0	0	1	0	0
	Production of Writing: W.9-10.4	0	0	0	1	0	0
	Total	44					

Table A. 2 Test-Level Reporting Categories and Standards for Reading

Grade	Reporting Category: Standard	Multiple Choice			Technology Enhanced			Evidence-Based Selected Response		
		DOK 1	DOK 2	DOK 3	DOK 1	DOK 2	DOK 3	DOK 1	DOK 2	DOK 3
9	Craft and Structure: RI.9-10.4	1	1	0	0	0	0	1	0	0
	Craft and Structure: RI.9-10.6	0	0	0	1	0	0	1	0	0
	Craft and Structure: RL.9-10.4	1	1	0	0	0	0	1	0	0
	Craft and Structure: RL.9-10.5	1	1	0	0	0	0	0	0	0
	Craft and Structure: RL.9-10.6	0	0	0	1	0	0	0	0	0
	Integration of Knowledge and Ideas: RI.910.5	1	0	0	0	0	0	0	0	0
	Integration of Knowledge and Ideas: RI.910.8	0	0	0	1	0	0	0	0	0
	Key Ideas: RI.9-10.1	0	0	0	1	0	0	0	0	0
	Key Ideas: RI.9-10.2	0	0	0	1	0	0	1	0	0
	Key Ideas: RL.9-10.1	2	0	0	0	0	0	0	0	0
	Key Ideas: RL.9-10.2	1	0	0	0	0	0	1	0	0
	Key Ideas: RL.9-10.3	3	0	0	0	0	0	0	0	0
	Key Ideas: RL.9-10.7	0	0	0	1	0	0	0	0	0
	Total					35				
10	Craft and Structure: L.9-10.4a	1	0	0	0	0	0	0	0	0
	Craft and Structure: RI.9-10.4	0	0	0	1	0	0	1	0	0
	Craft and Structure: RI.9-10.5	1	0	0	0	0	0	1	0	0
	Craft and Structure: RI.9-10.6	2	0	0	0	0	0	0	0	0
	Craft and Structure: RL.9-10.3	0	0	0	1	0	0	0	0	0
	Craft and Structure: RL.9-10.4	1	1	0	0	0	0	0	0	0
	Craft and Structure: RL.9-10.5	0	0	0	1	0	0	0	0	0
	Integration of Knowledge and Ideas: RI.910.7	1	0	0	0	0	0	0	0	0

Grade	Reporting Category: Standard	Multiple Choice			Technology Enhanced			Evidence-Based Selected Response		
		DOK 1	DOK 2	DOK 3	DOK 1	DOK 2	DOK 3	DOK 1	DOK 2	DOK 3
	Integration of Knowledge and Ideas: RI.910.8	1	2	0	0	0	0	0	0	0
	Integration of Knowledge and Ideas: RL.910.7	1	0	0	0	0	0	0	0	0
	Key Ideas: RI.9-10.1	2	2	1	0	0	0	0	0	0
	Key Ideas: RI.9-10.2	1	1	0	0	0	0	0	0	0
	Key Ideas: RI.9-10.3	0	0	0	2	0	0	0	0	0
	Key Ideas: RL.9-10.1	2	0	0	0	0	0	1	0	0
	Key Ideas: RL.9-10.2	0	0	0	1	0	0	1	0	0
	Key Ideas: RL.9-10.3	2	0	0	0	0	0	0	0	0
	Total					35				

Table A. 3 Test-Level Reporting Categories and Standards for Mathematics

Grade	Reporting Category: Standard	Multiple Choice			Technology Enhanced		
		DOK 1	DOK 2	DOK 3	DOK 1	DOK 2	DOK 3
	Algebra: MI.A.CETABLE D. 1	1	0	0	0	0	0
	Algebra: MI.A.CETABLE D. 2	0	0	0	1	0	0
	Algebra: MI.A.CETABLE D. 3	0	0	0	2	0	0
	Algebra: MI.A.REI. 12	1	1	0	0	0	0
	Algebra: MI.A.REI.3b	1	0	0	0	0	0
	Algebra: MI.A.REI. 6	0	0	0	1	0	0
	Functions: MI.F.BF.1b	0	0	0	1	0	0
	Functions: MI.F.BF. 2	1	0	0	0	0	0
	Functions: MI.F.IF. 1	1	0	0	0	0	0
	Functions: MI.F.IF. 2	1	0	0	0	0	0
	Functions: MI.F.IF. 4	0	0	0	1	0	0
	Functions: MI.F.IF. 6	1	0	0	0	0	0
	Functions: MI.F.IF.7a	1	0	0	0	0	0
	Functions: MI.F.LE.1b	0	0	0	1	0	0
	Functions: MI.F.LE.1c	1	0	0	0	0	0
	Functions: MI.F.LE. 2	1	1	0	0	0	0
	Functions: MI.F.LE. 5	1	0	0	0	0	0
	Geometry: MI.G.CO. 1	1	0	0	0	0	0
	Geometry: MI.G.CO. 3	2	0	0	0	0	0
9	Geometry: MI.G.CO. 5	1	0	0	0	0	0
	Geometry: MI.G.CO. 6	1	0	0	0	0	0
	Geometry: MI.G.CO. 7	2	0	0	0	0	0
	Geometry: MI.G.GPE. 4	0	0	0	1	0	0
	Geometry: MI.G.GPE. 5	1	0	0	0	0	0
	Geometry: MI.G.GPE. 7	1	0	0	0	0	0
	Statistics and Probability: MI.S.ITABLE D. 1	0	0	0	1	0	0
	Statistics and Probability: MI.S.ITABLE D. 2	1	0	0	0	0	0
	Statistics and Probability: MI.S.ITABLE D. 3	1	0	0	0	0	0
	Statistics and Probability: MI.S.ITABLE D.6a	1	0	0	0	0	0
	Statistics and Probability: MI.S.ITABLE D.6b	1	0	0	0	0	0
	Statistics and Probability: MI.S.ITABLE D. 7	1	0	0	0	0	0
	Statistics and Probability: MI.S.ITABLE D. 8	1	0	0	0	0	0
	Total				0		

Algebra: MII.A.APR. 1	1	0	0	0	0	0
Algebra: MII.A.CETABLE D. 1	1	0	0	0	0	0
Algebra: MII.A.CETABLE D. 2	1	0	0	0	0	0
Algebra: MII.A.CETABLE D. 4	1	0	0	0	0	0
Algebra: MII.A.REI.4b	1	0	0	0	0	0
Algebra: MII.A.REI. 7	1	0	0	0	0	0
Algebra: MII.A.SSE. 1 a	0	0	0	1	0	0
Algebra: MII.A.SSE. 2	1	0	0	0	0	0
Algebra: MII.A.SSE.3a	1	0	0	0	0	0
Algebra: MII.A.SSE.3b	1	0	0	0	0	0
Functions: MII.F.BF.1a	0	0	0	1	0	0
Functions: MII.F.BF. 3	1	1	0	0	0	0
Functions: MII.F.IF. 4	1	0	0	0	0	0
Functions: MII.F.IF. 5	1	0	0	0	0	0
Functions: MII.F.IF. 6	1	0	0	0	0	0
Functions: MIII.F.IF.7a	1	0	0	0	0	0
Functions: MIII.F.IF.8b	0	0	0	1	0	0
Functions: MII.F.IF. 9	1	0	0	0	0	0
Functions: MII.F.LE. 3	0	0	0	1	0	0
Functions: MII.F.TF. 8	1	0	0	0	0	0
Geometry: MII.G.C. 2	1	0	0	0	0	0
Geometry: MII.G.CO. 10	2	1	0	0	0	0
Geometry: MII.G.CO. 9	1	0	0	0	0	0
Geometry: MII.G.GPE. 1	1	0	0	0	0	0
Geometry: MII.G.GPE. 4	1	0	0	0	0	0
Geometry: MII.G.GPE. 6	1	0	0	0	0	0
Geometry: MII.G.SRT.1b	0	0	0	1	0	0
Geometry: MII.G.SRT. 2	1	0	0	0	0	0
Geometry: MII.G.SRT. 4	0	0	0	1	0	0
Geometry: MII.G.SRT. 5	1	0	0	0	0	0
Number and Quantity: MII.N.RN. 2	2	0	0	0	0	0
Number and Quantity: MII.N.RN. 3	0	0	0	1	0	0
Statistics and Probability: MII.S.CP. 1	1	0	0	0	0	0
Statistics and Probability: MII.S.CP. 4	1	0	0	0	0	0
Statistics and Probability: MII.S.CP. 6	0	0	0	1	0	0
Statistics and Probability: MII.S.ITABLE D. 5	1	0	0	0	0	0
Total						

Appendix B: Student Testing Time

Figure B.1. English Grade 9 Student Testing Time

Figure B.3. Reading Grade 9 Student Testing Time

Figure B.2. English Grade 10 Student Testing Time

Figure B.4. Reading Grade 10 Student Testing Time

Figure B.5. Math Grade 9 Student Testing Time

Figure B.7. Science Grade 9 Student Testing Time

Figure B.6. Math Grade 10 Student Testing Time

Figure B.8. Science Grade 10 Student Testing Time

Appendix C: Item Statistics Summaries

Table C.1. Item Mean for One-Point Items

Subject	Grade	N	$p<0.30$	$0.30 \leq p<0.55$	$0.55 \leq p<0.75$	$0.75 \leq p<0.95$	$p \geq 0.95$	p
	9	32	1	10	12	9	-	0.61
	10	30	2	8	14	6	-	0.61
Reading	9	27	4	12	10	1	-	0.52
	10	28	1	9	13	5	-	0.59
Mathematics	9	40	6	20	11	3	-	0.48
	10	40	8	18	11	3	-	0.46

Table C.2. Item Mean for Two-Point Items

Subject	Grade	N	Mean	Min	Max
English	9	6	1.74	0.82	3.63
	10	7	1.71	0.44	3.44
	9	8	0.74	0.43	1.45
Mathematics	10	7	1.13	0.73	1.43
	9	5	0.99	0.59	1.26
Science	10	6	0.66	0.42	0.92

Table C.3. Item Total Correlation for One-Point Items

| Subject | Grade | N | $r<0.20$ | $0.20 \leq r<0.40$ | $0.40 \leq r<0.60$ | $0.60 \leq r<0.80$ | $r \geq 0.80$ | Median
 ITC |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 9 | 32 | 2 | 17 | 0 | - | - | 0.41 |
| | 10 | 30 | 0 | 19 | - | - | - | 0.45 |
| Reading | 9 | 27 | 2 | 11 | 0 | - | - | 0.38 |
| | 10 | 28 | 1 | 15 | - | - | - | 0.42 |
| Mathematics | 9 | 40 | 0 | 25 | 3 | - | - | 0.44 |
| | 10 | 40 | 0 | 25 | - | - | - | 0.41 |

[^1]Table C.4. Item Total Correlation for Two-Point Items

Subject	Grade	N	Median r	Min r	Max r
	9	6	0.46	0.42	0.68
	10	7	0.55	0.32	0.76
Reading	9	8	0.45	0.28	0.61
	Mathematics	10	7	0.61	0.33
Science		5	0.56	0.28	0.67
	10	6	0.35	0.28	0.68

Table C.5. Differential Item Functioning

Subject	Grade	Subgroups	DIF Categories				
			Negligible DIF	Moderate DIF		Substantial DIF	
				Focal	Reference	Focal	Reference
English	9	Male-Female	38	-	-	-	-
		White-Black	38	-	-	-	-
		White-Hispanic	38	-	-	-	-
	10	Male-Female	37	-	-	-	-
		White-Black	37	-	-	-	-
		White-Hispanic	37	-	-	-	-
Reading	9	Male-Female	35	-	-	-	-
		White-Black	35	-	-	-	-
		White-Hispanic	35	-	-	-	-
	10	Male-Female	31	3	-	-	-
		White-Black	35	-	-	-	-
		White-Hispanic	34	-	1	-	-
Mathematics	9	Male-Female	36	-	-	-	-
		White-Black	37	-	3	-	-
		White-Hispanic	40	-	-	-	-
	10	Male-Female	39	-	-	-	-
		White-Black	38	-	2	-	-
		White-Hispanic	40	-	-	-	-
Science	9	Male-Female	23	-	-	-	-
		White-Black	23	-	-	-	-
		White-Hispanic	23	-	-	-	-
	10	Male-Female	23	-	-	-	-
		White-Black	23	-	-	-	-
		White-Hispanic	23	-	-	-	-

Note: "Focal" indicates DIF in favor of Female, Black, or Hispanic students; "Reference" indicates DIF in favor of Male or White students.

Appendix D: Reliability and Standard Error by Subgroup

Table D.1. English Grade 9 Test Reliability

Table D.2. English Grade 10 Test Reliability

	Test Group	N	Alpha	SEM	Conventions of Standard English	Knowledge of Language	Production of Writing
All	Students						
	Tested	42,534	0.9	8.95	0.83	0.57	0.76
Gender	Female	20,219	0.89	8.87	0.82	0.53	0.74
	Male	22,307	0.9	9	0.84	0.58	0.77
Ethnicity	Hispanic or Latino Ethnicity	7,863	0.88	8.68	0.8	0.52	0.72
	Asian	765	0.9	9.22	0.84	0.56	0.76
	Native						
	Hawaiian or						
	Other Pacific Islander	626	0.86	8.6	0.78	0.47	0.66
	Black or African						
	American	561	0.89	8.83	0.81	0.57	0.71
	American						
	Indian or Alaska						
	Native	384	0.87	8.61	0.78	0.51	0.67
	White	31,087	0.9	8.96	0.83	0.55	0.75
	Other	1,248	0.9	8.97	0.83	0.57	0.75
Limited English Proficiency	No	40,025	0.9	8.95	0.83	0.56	0.75
	Yes	2,509	0.81	8.69	0.72	0.39	0.56
Economic Disadvantage	No	32,944	0.9	8.97	0.83	0.56	0.76
	Yes	9,590	0.89	8.77	0.81	0.55	0.73
Special Education	No	38,705	0.89	8.94	0.82	0.55	0.75
	Yes	3,829	0.85	8.86	0.76	0.45	0.65

Table D.3. Reading Grade 9 Test Reliability

	Test Group	N	Alpha	SEM	Craft and Structure	Integration of Knowledge and Ideas	Key Ideas
All	Students Tested	46,199	0.86	10.68	0.7	0.33	0.77
Gender	Female	21,990	0.85	10.48	0.68	0.31	0.76
	Male	24,189	0.87	10.82	0.71	0.35	0.78
Ethnicity	Hispanic or Latino Ethnicity	8,683	0.84	10.98	0.66	0.28	0.73
	Asian	783	0.86	10.73	0.7	0.38	0.77
	Native Hawaiian or Other Pacific Islander	671	0.81	11.15	0.63	0.23	0.7
	Black or African American	574	0.85	11.14	0.68	0.32	0.75
	American Indian or Alaska Native	467	0.81	11.16	0.63	0.23	0.71
	White	33,586	0.85	10.61	0.69	0.31	0.76
	Other	1,435	0.86	10.64	0.71	0.34	0.78
Limited English Proficiency	No	42,834	0.86	10.63	0.69	0.32	0.77
	Yes	3,365	0.7	12.25	0.48	0.12	0.54
Economic Disadvantage	No	35,036	0.86	10.62	0.69	0.32	0.77
	Yes	11,163	0.85	10.88	0.68	0.32	0.76
Special Education	No	41,732	0.85	10.6	0.68	0.31	0.76
	Yes	4,467	0.78	11.56	0.57	0.23	0.66

Table D.4. Reading Grade 10 Test Reliability

	Test Group	N	Alpha	SEM	Craft and Structure	Integration of Knowledge and Ideas	Key Ideas
All	Students Tested	42,603	0.89	9.26	0.74	0.47	0.82
Gender	Female	20,235	0.88	9.04	0.71	0.43	0.8
	Male	22,359	0.9	9.39	0.76	0.49	0.83
Ethnicity	Hispanic or Latino Ethnicity	7,889	0.87	9.24	0.7	0.39	0.81
	Asian	763	0.89	9.03	0.74	0.51	0.82
	Native Hawaiian or Other Pacific Islander	640	0.85	9.19	0.67	0.36	0.78
	Black or African American	560	0.87	9.38	0.68	0.38	0.8
	American Indian or Alaska Native	396	0.87	9.24	0.67	0.36	0.81
	White	31,112	0.88	9.25	0.73	0.46	0.81
	Other	1,243	0.89	9.35	0.73	0.48	0.82
Limited English Proficiency	No	40,103	0.89	9.24	0.73	0.46	0.81
	Yes	2,500	0.78	9.77	0.52	0.2	0.71
Economic Disadvantage	No	32,978	0.89	9.24	0.73	0.46	0.81
	Yes	9,625	0.88	9.28	0.72	0.42	0.81
Special Education	No	38,760	0.88	9.23	0.73	0.46	0.81
	Yes	3,843	0.83	9.59	0.62	0.29	0.75

Table D.5. Math Grade 9 Test Reliability

	Test Group	N	Alpha	SEM	Algebra	Functions	Geometry	Number and Quantity
All	Students Tested	45,016	0.91	8.96	0.79	0.74	0.68	0.65
Gender	Female	21,337	0.9	8.76	0.76	0.71	0.65	0.62
	Male	23,662	0.92	9.07	0.8	0.76	0.71	0.68
Ethnicity	Hispanic or Latino Ethnicity	8,316	0.87	10.73	0.72	0.64	0.57	0.57
	Asian	767	0.93	8.99	0.82	0.79	0.74	0.65
	Native Hawaiian or Other Pacific Islander	666	0.85	11.4	0.67	0.61	0.54	0.52
	Black or African American	550	0.87	11.29	0.72	0.63	0.53	0.58
	American Indian or Alaska Native	425	0.84	11.57	0.65	0.58	0.55	0.53
	White	32,903	0.91	8.49	0.78	0.73	0.67	0.64
	Other	1,389	0.91	8.77	0.79	0.74	0.67	0.64
Limited English Proficiency	No	41,795	0.91	8.72	0.78	0.73	0.68	0.64
	Yes	3,221	0.73	14.11	0.52	0.39	0.34	0.39
Economic	No	34,320	0.91	8.58	0.78	0.73	0.67	0.64
Disadvantage	Yes	10,696	0.89	10.15	0.76	0.69	0.64	0.62
Special Education	No	40,697	0.91	8.6	0.78	0.73	0.67	0.63
	Yes	4,319	0.81	12.66	0.61	0.53	0.47	0.5

Table D.6. Math Grade 10 Test Reliability

	Test Group	N	Alpha	SEM	Algebra	Functions	Geometry	Number and Quantity	Statistics and Probability
All	Students								
	Tested	41,776	0.9	9.87	0.68	0.67	0.75	0.51	0.47
Gender	Female	19,768	0.88	9.7	0.64	0.63	0.73	0.46	0.43
	Male	21,999	0.91	9.97	0.71	0.71	0.77	0.54	0.5
Ethnicity	Hispanic or Latino								
	Ethnicity	7,634	0.84	11.92	0.55	0.55	0.65	0.43	0.38
	Asian	755	0.92	9.17	0.75	0.75	0.79	0.53	0.48
	Native								
	Hawaiian								
	or Other								
	Pacific Islander	612	0.84	11.8	0.53	0.54	0.63	0.46	0.34
	Black or African								
	American	551	0.8	12.8	0.5	0.5	0.54	0.48	0.31
	American								
	Indian or								
	Alaska								
	Native	374	0.79	13.54	0.45	0.46	0.53	0.39	0.3
	White	30,617	0.9	9.47	0.68	0.67	0.75	0.49	0.46
	Other	1,233	0.9	9.81	0.68	0.65	0.74	0.52	0.48
Limited English Proficiency	No	39,339	0.9	9.66	0.68	0.67	0.75	0.49	0.46
	Yes	2,437	0.67	16.33	0.33	0.32	0.4	0.31	0.2
Economic Disadvantage	No	32,441	0.9	9.5	0.68	0.68	0.75	0.49	0.47
	Yes	9,335	0.87	11.43	0.58	0.59	0.7	0.47	0.42
Special Education	No	38,029	0.9	9.49	0.68	0.67	0.75	0.48	0.46
	Yes	3,747	0.76	14.97	0.41	0.41	0.48	0.38	0.29

Table D.7. Science Grade 9 Test Reliability

	Test Group	N	Alpha	SEM	Construct Explanations	Developing Models	Gathering and Investigating	Using Mathematical Thinking
All	Students Tested	46,026	0.84	12.52	0.55	0.55	0.6	0.62
Gender	Female	21,878	0.82	12.4	0.51	0.52	0.58	0.58
	Male	24,128	0.85	12.58	0.58	0.57	0.62	0.65
Ethnicity	Hispanic or Latino Ethnicity	8,671	0.8	13.12	0.46	0.48	0.53	0.56
	Asian	775	0.84	12.39	0.56	0.51	0.62	0.6
	Native Hawaiian or Other Pacific Islander	689	0.78	12.93	0.42	0.45	0.43	0.55
	Black or African American	582	0.8	13.76	0.48	0.49	0.54	0.56
	American Indian or Alaska Native	460	0.75	13.14	0.44	0.41	0.45	0.45
	White	33,407	0.83	12.32	0.54	0.53	0.6	0.61
	Other	1,442	0.84	12.79	0.55	0.55	0.6	0.61
Limited English	No	42,657	0.83	12.4	0.54	0.54	0.59	0.61
	Yes	3,369	0.64	14.95	0.25	0.28	0.35	0.41
Economic Disadvantage	No	34,919	0.83	12.36	0.54	0.54	0.6	0.61
	Yes	11,107	0.82	12.95	0.52	0.51	0.56	0.6

	Test Group	N	Alpha	SEM	Construct Explanations	Developing Models	Gathering and Investigating	Using Mathematical Thinking
Special Education	No	41,572	0.83	12.37	0.54	0.53	0.59	0.61
	Yes	4,454	0.75	13.94	0.47	0.41	0.41	0.5

Table D.8. Science Grade 10 Test Reliability

	Test Group	N	Alpha	SEM	Construct Explanations	Developing Models ${ }^{1}$	Gathering and Investigating	Using Mathematical Thinking
All	Students Tested	42,212	0.8	14.81	0.47	0.49	0.69	0.41
Gender	Female	20,041	0.77	14.94	0.44	0.4	0.68	0.36
	Male	22,162	0.82	14.68	0.5	0.55	0.7	0.45
Ethnicity	Hispanic or Latino Ethnicity	7,805	0.71	17.19	0.29	0.35	0.58	0.32
	Asian	754	0.83	14.32	0.57	0.5	0.72	0.44
	Native Hawaiian or Other Pacific Islander	632	0.63	18.29	0.21	0.31	0.53	0.16
	Black or African American	559	0.64	18.64	0.26	0.32	0.49	0.27
	American Indian or Alaska Native	383	0.64	17.34	0.3	0.12	0.52	0.26
	White	30,844	0.81	14.34	0.49	0.5	0.7	0.42
	Other	1,235	0.81	14.58	0.52	0.49	0.69	0.45
Limited English Proficiency	No	39,719	0.8	14.61	0.48	0.49	0.69	0.41
	Yes	2,493	0.43	21.79	0.07	0.17	0.3	0.16
Economic Disadvantage	No	32,660	0.81	14.43	0.49	0.5	0.7	0.42
	Yes	9,552	0.75	16.49	0.36	0.41	0.62	0.35

[^2]| | Test Group | N | Alpha | SEM | Construct Explanations | Developing Models ${ }^{1}$ | $\begin{aligned} & \text { Gathering } \\ & \text { and } \\ & \text { Investigating } \\ & \hline \end{aligned}$ | Using Mathematical Thinking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Special Education | No | 38,421 | 0.8 | 14.53 | 0.48 | 0.49 | 0.69 | 0.41 |
| | Yes | 3,791 | 0.6 | 19.52 | 0.17 | 0.29 | 0.43 | 0.25 |

Appendix E: Conditional Standard Error of Scale Scores

Appendix F: Accuracy and Consistency

Table F.1. Accuracy Classification for English Grade 9

True Score	Observed Score				Accuracy \%
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
Below Proficient	0.179	0.025	0.001	0.000	76.56
Approaching Proficient	0.047	0.096	0.038	0.001	
Proficient	0.003	0.049	0.146	0.041	
Highly Proficient	0.000	0.002	0.058	0.315	

Table F.2. Accuracy Classification at Proficient Cut Point for English Grade 9

True Score	Observed Score				Accuracy
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	\%
Below Proficient	0.179	0.025	0.001	0.000	
Approaching Proficient	0.047	0.096	0.038	0.001	93.66
Proficient	0.003	0.049	0.146	0.041	
Highly Proficient	0.000	0.002	0.058	0.315	

Table F.3. Consistency Classification for English Grade 9

First Form	Alternate Form					Consistency $\%$
	Below Proficient	Approaching Proficient	Kroficient	Highly Proficient	Kappa Below Proficient	
0.042	0.009	0.000				
Approaching Proficient	0.046	0.076	0.054	0.007	65.43	0.528
Proficient	0.008	0.047	0.117	0.061		
Highly Proficient	0.000	0.006	0.063	0.288		

Table F.4. Accuracy Classification for English Grade 10

True Score	Observed Score				Accuracy \%
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
Below Proficient	0.162	0.025	0.001	0.000	73.29
Approaching Proficient	0.047	0.112	0.037	0.001	
Proficient	0.003	0.056	0.168	0.041	
Highly Proficient	0.000	0.001	0.056	0.291	

Table F.5. Accuracy Classification at Proficient Cut Point for English Grade 10

True Score	Observed Score				Accuracy \%
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
Below Proficient	0.162	0.025	0.001	0.000	90.19
Approaching Proficient	0.047	0.112	0.037	0.001	
Proficient	0.003	0.056	0.168	0.041	
Highly Proficient	0.000	0.001	0.056	0.291	

Table F.6. Consistency Classification for English Grade 10

First Form	Alternate Form				$\begin{gathered} \text { Consistency } \\ \% \end{gathered}$	Kappa
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient		
Below Proficient	0.162	0.043	0.007	0.000	65.12	0.527
Approaching Proficient	0.046	0.085	0.055	0.005		
Proficient	0.008	0.052	0.136	0.064		
Highly Proficient	0.000	0.005	0.063	0.268		

Table F.7. Accuracy Classification for Math Grade 9

True Score	Observed Score				Accuracy
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
0.234	0.018	0.000	0.000		
Approaching Proficient	0.061	0.102	0.017	0.001	71.98
Proficient	0.005	0.068	0.072	0.014	
Highly Proficient	0.000	0.012	0.083	0.312	

Table F. 8 Accuracy Classification at Proficiency Cut Point for Math Grade 9

True Score	Observed Score				Accuracy
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	\%
Below Proficient 0.234 0.018 0.000 0.000 Approaching Proficient 0.061 0.102 0.017 0.001	89.58				
Proficient	0.005	0.068	0.072	0.014	
Highly Proficient	0.000	0.012	0.083	0.312	

Table F.9. Consistency Classification for Math Grade 9

First Form	Alternate Form					Consistency
	Below Proficient	Approaching Proficient	Kroficient	Highly Proficient	Kappa Below Proficient 0.246 0.018	0.006
Approaching Proficient	0.048	0.096	0.046	0.000		
Proficient	0.006	0.046	0.072	0.049	68.12	0.565
Highly Proficient	0.000	0.010	0.049	0.267		

Table F.10. Accuracy Classification for Math Grade 10

True Score	Observed Score				Accuracy \%
	Below Proficient	Approaching			
Proficient	Proficient	Highly Proficient			
Below Proficient	0.278	0.015	0.001	0.000	67.76
Approaching Proficient	0.072	0.069	0.013	0.001	
Proficient	0.014	0.071	0.057	0.009	
Highly Proficient	0.001	0.023	0.102	0.274	

Table F.11. Accuracy Classification at Proficient Cut Point for Math Grade 10

True Score	Observed Score				Accuracy \%
	Approaching				
	Below Proficient	Proficient	Proficient	Highly Proficient	
Below Proficient	0.278	0.015	0.001	0.000	
Approaching Proficient	0.072	0.069	0.013	0.001	
Proficient	0.014	0.071	0.057	0.009	
Highly Proficient	0.001	0.023	0.102	0.274	

Table F.12. Consistency Classification for Math Grade 10

First Form	Alternate Form				Consistency \%	Kappa
	Approaching					
	Below Proficient	Proficient	Proficient	Highly Proficient		
Below Proficient	0.303	0.051	0.010	0.001		
Approaching Proficient	0.051	0.073	0.044	0.011	66.80	0.54
Proficient	0.040	0.044	0.070	0.049		
Highly Proficient	0.001	0.011	0.049	0.223		

Table F.13. Accuracy Classification for Science Grade 9

True Score	Observed Score				Accuracy \%
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
Below Proficient	0.260	0.029	0.009	0.001	
Approaching Proficient	0.051	0.044	0.031	0.008	
Proficient	0.018	0.041	0.062	0.042	69.43
Highly Proficient	0.002	0.014	0.060	0.329	

Table F.14. Accuracy Classification at Proficient Cut Point for Science Grade 9

True Score	Observed Score				Accuracy \%
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
Below Proficient	0.260	0.029	0.009	0.001	
Approaching Proficient	0.051	0.044	0.031	0.008	87.63
Proficient	0.018	0.041	0.062	0.042	
Highly Proficient	0.002	0.014	0.060	0.329	

Table F.15. Consistency Classification for Science Grade 9

First Form	Alternate Form					
	Kappa					
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient		
	0.256	0.043	0.025	0.009		
	0.044	0.033	0.033	0.023	62.70	0.47
	0.024	0.030	0.046	0.057		
Highly Proficient	0.008	0.020	0.056	0.292		

Table F.16. Accuracy Classification for Science Grade 10

True Score	Observed Score				
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
Below Proficient	0.240	0.033	0.013	0.001	
Approaching 0.053 0.043 0.038 0.010 Proficient 0.021 0.041 0.076 0.056 Proficient 0.002 0.011 0.054 0.306 Highly Proficient l					

Table F.17. Accuracy Classification at Proficient Cut Point for Science Grade 10

	Observed Score				Accuracy \%
	Below Proficient	Approaching Proficient	Proficient	Highly Proficient	
Below Proficient	0.240	0.033	0.013	0.001	
Approaching Proficient	0.053	0.043	0.038	0.010	86.11
Proficient	0.021	0.041	0.076	0.056	
Highly Proficient	0.002	0.011	0.054	0.306	

Table F.18. Consistency Classification for Science Grade 10

First Form	Alternate Form					Consistency
	Below Proficient	Approaching Proficient	Kroficient	Highly Proficient	Kappa Below Proficient 0.230	0.044
Approaching	0.044	0.029	0.033	0.011		
Proficient	0.031	0.033	0.055	0.062	59.40	0.43
Proficient	0.011	0.021	0.062	0.280		
Highly Proficient						

Appendix G: Common Item Scatterplots for 2022 Anchor Items

Figure G.1. Scatterplot of Anchor Items for Math Grade 9

Figure G.2. Scatterplot of Anchor Items for Math Grade 10

Figure G.3. Scatterplot of Anchor Items for Reading Grade 9

Figure G.4. Scatterplot of Anchor Items for Reading Grade 10

Figure G.5. Scatterplot of Anchor Items for English Grade 9

Figure G.6. Scatterplot of Anchor Items for English Grade 10

Figure G.7. Scatterplot of Anchor Items for Science Grade 9

Figure G.8. Scatterplot of Anchor Items for Science Grade 10

Appendix H: Updating ACT Score Predictions for Utah Grade 10 Science Aspire Plus

ACT Prediction Table Updates
 Updating ACT Score Predictions for Utah Grade 10 Aspire Plus

May 2022
Jeff Allen, ACT

We document the data and procedures used to generate updated ACT score predictions for the Utah Aspire Plus $10^{\text {th }}$ grade assessments. Included in this documentation are:

- A description of the methodological approach
- Descriptions of the samples used to generate the predictions
- Description of weighting procedure to ensure samples are representative of the $10^{\text {th }}$ grade population
- Description of updated predicted ACT score ranges
- Comparison to previously derived predicted ACT score ranges
- Accuracy statistics

The updated ACT score predictions can be used for reporting Utah Aspire Plus results for spring 2022 10 th graders. For $9^{\text {th }}$ graders, the ACT score predictions were updated in spring 2021 but will not be updated in spring 2022 because new data are not available ($9^{\text {th }}$ grade tests were cancelled in spring 2020). For $10^{\text {th }}$ graders, the updated ACT science score predictions are based on the current Utah science and composite score scales (first implemented in spring 2021). For 9th graders, the ACT science score predictions are based on the old Utah science and composite score scales. Therefore, for $9^{\text {th }}$ grade, the concordance of the old and updated Utah Aspire Plus science scores must first be applied to report the predicted ACT science and composite score ranges.

General description of methodological approach

The following steps were taken:

1) Match the spring 2021 grade 10 Utah Aspire Plus records to the spring 2022 grade 11 ACT test records. Student state ID was used to match the records.
2) Compare the matched sample to the spring 2021 grade 10 data to assess how representative the matched sample is to the target population (the spring grade 10 data is used as the target population). The matched sample is different than the target population because some students were lost to follow-up (e.g., moved out of state, were absent on test day, or did not take the ACT for some other reason).
3) Weight the matched sample to be representative of the target population with respect to $10^{\text {th }}$ grade test scores, gender, limited English proficient status, special education status, and race/ethnicity. Propensity scores, based on logistic regression models, are used to derive the weights.
4) Using the weighted data, use quantile regression to estimate the percentiles of ACT scores, conditional on Utah Aspire Plus scores. The SGP R package is used to obtain the quantile of each possible ACT score for each possible Utah Aspire Plus score. Quantile regression using the SGP package is preferred over linear regression because it does not impose assumptions of linearity or homoskedasticity.
5) Using the SGP model results, find the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of the ACT score distribution for each possible $10^{\text {th }}$ grade test score. The $25^{\text {th }}$ percentile serves as the lower bound of the predicted ACT score range and the $75^{\text {th }}$ percentile serves as the upper bound of the predicted ACT score range. If ACT scores were reported on a continuous scale, this would produce predicted score ranges with 50\% coverage. Because ACT scores are reported to the nearest integer, this produces predicted score ranges with approximately 60% coverage.
6) Adjust the predicted ACT score ranges to ensue that they do not decrease with Utah Aspire Plus score. This step is necessary because the SGP
procedure may result in conditional percentiles that are not monotonically increasing (this only tends to happen for areas of the score distribution where the data are very sparse).
7) Assess the accuracy of the predicted ACT score ranges and compare the ranges to those that were estimated in 2020. Note that steps 2 through 6 are completed for each subject for which predicted ACT scores are estimated (English, math, reading, science, and composite).

Samples used to generate the predictions

Table 1 shows the number of students with reported scale scores, by subject and assessment. Table 1 also provides the number of students with scale scores on both tests (Matched Sample).

Table 1: Number of students tested and matched, by subject

Subject	2021 Grade 10 Aspire Plus	2022 Grade 11 ACT	Matched Sample
Composite	36,266	42,261	29,789
English	39,998	42,446	32,640
Mathematics	39,251	42,409	32,075
Reading	40,152	42,306	32,676
Science	39,785	42,275	32,390

Not all students who tested in $10^{\text {th }}$ grade had a matching $11^{\text {th }}$ grade ACT record. This is expected for students who migrated out of Utah after the $10^{\text {th }}$ grade test, or who did not take the ACT test for any other reason. Similarly, not all ACT-tested students had matching $10^{\text {th }}$ grade records. This is expected for students who migrated into Utah after the $10^{\text {th }}$ grade test, who didn't test in spring 2021 for pandemic-related reasons, or who did not take the $10^{\text {th }}$ grade test for any other reason.

Because the matched samples are large and representative of the target population (described later), we do not expect that this missing data would have much impact on the updated predictions.

Because the predictions are reported to $10^{\text {th }}$ grade students, we used the $10^{\text {th }}$ grade data as the target population. In Table 2, we compare the matched sample to the target population on $10^{\text {th }}$ grade test score quintile, gender, limited English proficient status, special education status, and race/ethnicity. Table 2 only reflects the composite score analysis, but the comparison is similar across the other subject areas.

Table 2: Comparing the matched sample to the target population (composite score)

Variable	Matched Sample	Target Population	Matched Sample, Weighted
Grade 10 Aspire Plus score, quintile			
$1^{\text {st }}$	15.8%	19.6%	19.6%
$2^{\text {nd }}$	20.5%	20.9%	21.0%
$3^{\text {rd }}$	20.9%	20.1%	20.2%
$4^{\text {th }}$	20.5%	18.9%	18.9%
$5^{\text {th }}$	22.3%	20.4%	20.4%
Female	48.6%	47.9%	48.1%
Limited English proficient	3.5%	4.3%	4.4%
Special education	7.1%	8.5%	8.6%
Race/ethnicity			
African American	1.1%	1.2%	1.2%
Asian	1.8%	1.8%	1.9%
Hispanic	14.9%	16.1%	16.0%
Two or more races	2.8%	2.8%	2.8%
Other	1.7%	1.9%	1.9%
White	77.8%	76.2%	76.2%

Table 2 shows that students in the matched sample tend to have higher $10^{\text {th }}$ grade test scores, are slightly less likely to have limited English proficient status, are slightly less likely to have special education status, and are slightly more likely to be White. Table 2 also shows the comparison after weighting the matched sample to be more like the target population on these characteristics. After weighting, the matched sample is nearly identical to the target population. Later, we describe the method used to weight the matched sample.

Table 3 shows summary statistics for the $10^{\text {th }}$ and $11^{\text {th }}$ grade test scores for the matched samples and weighed matched samples. In addition to test score means and standard deviations, the correlations are also presented. The correlations range from 0.64 for science to 0.86 for composite.

Because the weighting procedure assigns larger weights to lower-achieving students, the mean test scores for the weighted matched sample are lower than those for the matched sample. Weighting also slightly increases the standard deviation of the $10^{\text {th }}$ grade test scores but has very little impact on the correlations.

Table 3: Matched sample summary statistics

Sample	Subject	Grade 10 Aspire Plus		Grade 11 ACT		r
		Mean	SD	Mean	SD	
Matched Sample	Composite	199.76	24.77	20.20	5.36	0.86
	English	198.82	25.83	18.98	6.37	0.80
	Mathematics	194.74	32.25	19.59	5.30	0.74
	Reading	203.72	25.05	21.04	6.57	0.70
	Science	199.07	32.86	20.19	5.30	0.64
Matched Sample, Weighted	Composite	197.38	25.56	19.80	5.39	0.86
	English	196.77	26.26	18.57	6.37	0.80
	Mathematics	191.51	33.90	19.20	5.26	0.73
	Reading	201.27	25.90	20.58	6.61	0.70
	Science	196.41	33.49	19.86	5.29	0.63

Note: SD = standard deviation, $r=$ Pearson correlation

Weighting procedure

For weighting, we used the inverse probability of treatment weight (IPTW) based on propensity scores. ${ }^{2}$ This involves the following steps:

1) Fit a logistic regression model for the target population where the dependent variable is whether the student is included in the matched sample, and the independent variables are the demographic and achievement variables listed in Table 2.
2) Use the predicted probability from the logistic regression model as the propensity score (ps).

[^3]3) For students in the matched sample, assign weights as weight $=1 / p s$.

The weighted matched sample is a synthetic sample in which the distribution of covariates is independent of inclusion in the matched sample. The logistic regression model estimates used to generate the propensity scores for the composite analysis are presented in Table 4. The results are similar for the other subject areas.

The logistic regression model shows that the following variables are associated with a lower probability of being in the matched sample: Inclusion in the $1 \mathrm{st}, 2^{\text {nd }}$, or $3^{\text {rd }}$ quintile of $10^{\text {th }}$ grade test scores; male gender; limited English proficient status, special education status; and membership in Hispanic or Other racial/ethnic minority groups. The weighting procedure up-weights students in these groups to make the matched sample more like the target population.

Table 4: Logistic regression propensity score model estimates, composite score

Variable	Beta	SE	p-value
Intercept	2.142	0.041	$<.0001$
Grade 10 Aspire Plus score, quintile*			
$1^{\text {st }}$	-1.330	0.049	$<.0001$
$2^{\text {nd }}$	-0.695	0.049	$<.0001$
$3^{\text {rd }}$	-0.379	0.051	$<.0001$
$4^{\text {th }}$	-0.076	0.054	0.163
Female	0.071	0.028	0.013
Limited English proficient	-0.170	0.063	0.007
Special education	-0.249	0.045	$<.0001$
Race/ethnicity*	-0.149	0.115	0.195
African American	0.012	0.111	0.912
Asian	-0.111	0.040	0.005
Hispanic	-0.080	0.085	0.347
Two or more races	-0.434	0.087	$<.0001$
Other			

*Reference groups are $5^{\text {th }}$ quintile and White.

Updated predicted ACT score ranges

Table 5 shows statistics related to the accuracy of the ACT score predictions and compares the accuracy of the updated predictions to those that were estimated in 2020. The statistics include:

- Mean width: the average width of the predicted ACT score range
- \%Within: the percentage of students in the matched sample whose ACT score was within the predicted ACT score range
- \%Below: the percentage of students in the matched sample whose ACT score was below the predicted ACT score range (\% over-predicted)
- \%Above: the percentage of students in the matched sample whose ACT score was above the predicted ACT score range (\% under-predicted)

Table 5: Prediction accuracy

Subject	Previously Derived Prediction			Updated Predictions				
	Mean width	\%Within	\%Below	\%Above	Mean width	\%Within	\%Below	\%Above
Composite	3.1	62.7%	14.3%	23.0%	3.2	62.9%	17.8%	19.3%
English	4.7	59.4%	16.3%	24.3%	4.7	59.5%	19.7%	20.8%
Math	3.3	62.1%	12.8%	25.1%	3.4	63.7%	17.4%	18.9%
Reading	5.8	56.4%	21.6%	22.0%	5.8	57.6%	20.5%	21.8%
Science	4.5	54.6%	23.7%	21.7%	4.9	59.1%	20.2%	20.8%

Table 5 shows that:

- The updated predicted score ranges have about the same width as the previous score ranges, as shown by the mean width of the prediction intervals.
- The updated predicted score ranges include $58-64 \%$ of actual ACT scores. Recall that the $25^{\text {th }}$ and $75^{\text {th }}$ conditional percentiles were used, resulting in a typical coverage percentage of around 60%. The predicted ACT score ranges could be widened to increase the percentage of students scoring within their predicted range.
- The updated predictions result in mostly symmetric prediction error percentages (e.g., similar percent over- and under predicted). Because the weighted matched sample has lower mean achievement than the matched
sample, the updated predictions are slightly more likely to under-predict for the matched sample. (But should be more symmetric for the weighted matched sample and target population).
- The previous predictions tended to underpredict for Composite, English, and Math and tended to slightly overpredict for science. (However, note that Table 5 does not incorporate the application of the concordance for Utah science and composite scores from 2019).

Figure 1 below shows the updated predicted ACT score ranges (dotted green lines) as compared to those estimated in 2020 (solid black line) for the composite scores. The figure also shows a histogram of $10^{\text {th }}$ grade composite scores to show where the differences are most consequential. Relative to the previous predictions from 2020, the updated predictions are very similar for most of the score range. At the upper end of the scale, the updated predictions are higher than the previous predictions.

Figure 1: Predicted ACT Composite Scores

Figure 2 below shows the same information for the math scores. The math predictions sifted upward for most scores. Because the previous ACT math predictions underpredicted, the updated predictions are shifted upwards. Figure 2 also shows that many students ($\mathrm{N}=1,707$) in the matched sample had the lowest possible $10^{\text {th }}$ grade math score (100). It's possible that these students had a large influence on the SGP model results and updated predicted ACT score ranges. The mean ACT math score for these students was 14.2 , with standard deviation 2.3. The updated predicted score range for students with a $10^{\text {th }}$ grade math score of 100 (13$15)$ seems reasonable.

Figure 2: Predicted ACT Math Scores
Figures 1 and 2 show the results for composite and math. Comparisons of the updated and previous predicted ACT score ranges are available for the other subjects in an EXCEL spreadsheet.

Appendix I: Scale Score Descriptive Statistics by Subgroup

Table I.1. English Grade 9 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	46,490	193	28.37	176	194	212	-0.13
Gender	Female	22,154	198	27.06	181	198	215	-0.03
	Male	24,314	189	28.88	171	191	208	-0.17
Ethnicity	Hispanic or Latino Ethnicity	8,931	178	26.57	161	179	196	-0.09
	Asian	784	198	29.92	180	197	215	0.03
	Native Hawaiian or Other							
	Pacific Islander	660	177	24.35	162.5	179	193	-0.40
	Black or African American	573	179	29.67	158	179	201	0.07
	American Indian or Alaska							
	Native	455	174	22.70	160	174	189	0.16
	White	33,659	198	27.18	182	199	215	-0.16
	Other	1,428	194	27.02	178	195	211	-0.14
Limited English	No	42,869	196	27.22	180	197	213	-0.12
	Proficiency	Yes	35,246	162	22.03	148	163	177

Table I.2. English Grade 10 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	42,861	197	28.39	178	197	215	0.05
Gender	Female	20,362	201	26.87	183	200	218	0.14
	Male	22,491	193	29.14	173	194	212	0.04
Ethnicity	Hispanic or Latino Ethnicity	8,107	182	25.31	166	182	199	0.08
	Asian	766	201	29.46	180	199	218	0.33
	Native Hawaiian or Other							
	Pacific Islander	629	183	23.08	168	183	197	0.05
	Black or African American	564	179	26.25	162.5	178	196.5	0.50
	American Indian or Alaska							
	Native	388	180	23.56	165	179	194	0.54
	White	31,157	201	27.85	184	202	218	-0.02
	Other	1,250	198	28.03	180	199	215	-0.08
Limited English Proficiency	No	40,102	199	27.72	181	199	216	0.03
	Yes	2,759	167	20.17	154	167	179	-0.04
Economic Disadvantage	No	33,146	200	28.18	182	201	218	0.00
	Yes	9,715	185	26.17	168	185	202	0.14
Special	No	38,949	199	27.53	182	200	217	0.03
Education	Yes	3,912	170	22.73	156	170	183	0.37

Table I.3. Math Grade 9 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	45,352	194	30.12	177	198	215	-0.71
Gender	Female	21,473	194	27.71	179	198	213	-0.81
	Male	23,862	194	32.13	176	198	217	-0.64
Ethnicity	Hispanic or Latino Ethnicity	8,608	176	29.85	159	178	196	-0.55
	Asian	767	201	33.24	183	204	222	-0.76
	Native Hawaiian or Other							
	Pacific Islander	666	175	29.43	158	178.5	196	-0.74
	Black or African American	550	172	31.24	153	173	192	-0.42
	American Indian or Alaska							
	Native	426	172	29.25	157	175	193	-0.66
	White	32,941	200	27.68	185	203	219	-0.79
	Other	1,394	195	29.26	178	197	215	-0.72
Limited English Proficiency	No	41,853	197	28.69	181	200	216	-0.75
	Yes	3,499	161	27.06	149	164	180	-0.64
Economic Disadvantage	No	34,495	199	28.32	183	202	218	-0.77
	Yes	10,857	180	31.20	162	182	202	-0.51
Special	No	40,949	198	28.2	182	201	217	-0.74
Education	Yes	4,403	163	29.31	149	165	182	-0.40

Table I.4. Math Grade 10 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	42,087	191	31.05	174	194	212	-0.70
Gender	Female	19,911	191	28.40	176	193	210	-0.81
	Male	22,167	191	33.24	172	194	214	-0.63
Ethnicity	Hispanic or Latino Ethnicity	7,878	175	30.11	161	177	193	-0.63
	Asian	757	199	32.40	180	201	219	-0.47
	Native Hawaiian or Other							
	Pacific Islander	615	173	29.22	159	175	192	-0.45
	Black or African American	553	171	28.49	158	173	188	-0.69
	American Indian or Alaska							
	Native	375	172	29.53	161	176	192	-0.91
	White	30,675	196	29.57	180	199	215	-0.81
	Other	1,234	191	30.39	176	193	212	-0.75
Limited English Proficiency	No	39,401	193	30.10	177	196	213	-0.74
	Yes	2,686	160	28.26	149	165	178	-0.70
Economic Disadvantage	No	32,629	195	29.89	179	198	214	-0.75
	Yes	9,458	177	31.27	162	180	198	-0.62
Special Education	No	38,270	194	29.47	178	196	213	-0.73
	Yes	3,817	161	30.32	148	165	179	-0.47

Table I.5. Reading Grade 9 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	46,570	196	28.91	177	197	215	-0.21
Gender	Female	22,144	200	27.47	182	200	218	-0.17
	Male	24,406	192	29.70	171	194	213	-0.20
	Hispanic or Latino Ethnicity	9,006	181	27.19	163	182	200	-0.10
	Asian	783	200	28.69	181	200	219	-0.07
	Native Hawaiian or Other							
	Pacific Islander	671	178	25.45	162	178	196	-0.13
	Black or African American	574	180	29.00	160	178.5	198	0.04
	American Indian or Alaska							
	Native	468	177	25.81	160.5	178	194.5	-0.11
	White	33,628	200	27.85	183	202	219	-0.27
	Other	1,440	196	28.98	177	198	215.5	-0.30
Limited English	No	42,898	198	28.03	181	200	217	-0.25
	Yes	3,672	167	22.46	152	166	182	-0.19
Proficiency	Yeonomic	No	11,333	189	28.08	182	201	218

Table I.6. Reading Grade 10 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	42,929	196	27.98	176	198	215	-0.09
Gender	Female	20,388	200	25.73	184	201	216	-0.14
	Male	22,532	192	29.46	170	193	214	0.03
Ethnicity	Hispanic or Latino Ethnicity	8,148	183	26.08	163	183	201	0.07
	Asian	765	199	27.85	180	201	217	-0.21
	Native Hawaiian or Other							
	Pacific Islander	643	180	23.99	163	181	198	-0.08
	Black or African American	562	178	25.79	158	179	197	0.00
	American Indian or Alaska							
	Native	397	180	25.34	161	180	197	0.22
	White	31,169	200	27.26	183	202	218	-0.15
	Other	1,245	197	28.10	177	200	216	-0.06
Limited English Proficiency	No	40,166	198	27.31	180	200	216	-0.11
	Yes	2,763	167	20.78	154	165	181	0.07
Economic Disadvantage	No	33,182	199	27.44	181	201	218	-0.13
	Yes	9,747	185	27.10	165	185	204	0.09
Special Education	No	39,018	198	27.20	181	200	217	-0.12
	Yes	3,911	171	23.22	156	169	185	0.36

Table I.7. Science Grade 9 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	46,392	201	31.30	181	203	221	-0.20
Gender	Female	22,034	201	29.32	183	203	220	-0.31
	Male	24,338	201	32.99	179	203	223	-0.14
Ethnicity	Hispanic or Latino Ethnicity	8,986	184	29.18	166	184	203	-0.16
	Asian	775	207	30.89	187	208	224	0.07
	Native Hawaiian or Other							
	Pacific Islander	689	182	27.35	164	182	202	-0.17
	Black or African American	582	181	31.02	163	181	201	-0.20
	American Indian or Alaska							
	Native	463	184	26.20	170	185	201	-0.65
	White	33,451	206	29.93	189	208	225	-0.24
	Other	1,446	201	31.58	181	203	221	-0.23
Limited English Proficiency	No	42,722	204	30.32	185	205	223	-0.22
	Yes	3,670	170	25.00	156	171	186	-0.44
Economic Disadvantage	No	35,116	205	30.34	187	207	224	-0.22
	Yes	11,276	188	30.69	168	189	208	-0.13
Special Education	No	41,851	204	30.24	185	205	223	-0.22
	Yes	4,541	174	27.78	158	174	190	0.01

Table I.8. Science Grade 10 Scale Score Descriptive Statistics

	Test Group	N	Mean	SD	P25	Median	P75	Skew
All	Students Scored	42,539	191	33.33	173	195	213	-0.48
Gender	Female	20,188	192	31.51	175	197	213	-0.67
	Male	22,342	191	34.87	171	194	213	-0.34
Ethnicity	Hispanic or Latino Ethnicity	8,049	178	31.88	160	181	200	-0.47
	Asian	756	197	34.51	177	201	220	-0.43
	Native Hawaiian or Other							
	Pacific Islander	635	174	30.06	157	177	196	-0.38
	Black or African American	562	174	31.19	156	178	196	-0.56
	American Indian or Alaska							
	Native	387	178	28.76	162	182	196	-0.41
	White	30,912	196	32.65	178	200	216	-0.54
	Other	1,238	193	33.49	173	197	215	-0.47
Limited English Proficiency	No	39,794	193	32.90	175	197	215	-0.51
	Yes	2,745	166	29.12	150	171	186	-0.58
Economic Disadvantage	No	32,862	195	32.8	177	199	216	-0.52
	Yes	9,677	181	32.85	161	184	203	-0.42
Special Education	No	38,665	194	32.71	176	198	215	-0.52
	Yes	3,874	169	30.81	152	173	189	-0.38

Appendix J: Scale Score Distributions for Overall Testing Population

Appendix K: Performance Level Distributions

Table K.1. English Grade 9 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	46,490	14.67	46.00	35.45	3.88
Gender	Female	22,154	10.13	45.18	39.76	4.93
	Male	24,314	18.82	46.77	31.49	2.92
Ethnicity	Hispanic or Latino					
	Ethnicity	8,931	29.08	53.10	16.92	0.91
	Asian	784	12.12	43.49	37.63	6.76
	Native Hawaiian or Other Pacific Islander	660	27.12	57.27	15.61	-
	Black or African					
	American	573	30.54	45.38	21.99	2.09
	American Indian or Alaska Native	455	31.43	57.14	10.99	0.44
	White	33,659	10.23	43.74	41.26	4.77
	Other	1,428	13.38	47.69	35.43	3.50
Limited English Proficiency	No	42,869	11.49	46.1	38.21	4.20
	Yes	3,621	52.39	44.79	2.76	0.06
Economic Disadvantage	No	35,246	11.23	44.10	40.05	4.62
	Yes	11,244	25.47	51.95	21.02	1.56
Special Education	No	41,964	10.94	46.16	38.64	4.27
	Yes	4,526	49.29	44.54	5.88	0.29

Table K.2. English Grade 10 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	42,861	10.28	43.34	42.04	4.35
Gender	Female	20,362	6.05	42.37	46.33	5.25
	Male	22,491	14.10	44.22	38.15	3.52
Ethnicity	Hispanic or Latino					
	Ethnicity	8,107	18.86	57.26	22.96	0.93
	Asian	766	7.31	42.95	41.51	8.22
	Native Hawaiian or Other Pacific Islander	629	16.69	61.53	21.14	0.64
	Black or African					
	American	564	23.05	56.21	19.15	1.6
	American Indian or Alaska Native	388	18.30	63.66	16.75	1.29
	White	31,157	7.70	38.93	48.07	5.31
	Other	1,250	9.20	41.92	44.56	4.32
Limited English Proficiency	No	40,102	8.52	42.24	44.61	4.64
	Yes	2,759	35.92	59.30	4.71	0.07
Economic Disadvantage	No	33,146	8.37	39.93	46.57	5.13
	Yes	9,715	16.80	54.95	26.59	1.67
Special Education	No	38,949	8.05	41.83	45.38	4.74
	Yes	3,912	32.46	58.28	8.79	0.46

Table K.3. Math Grade 9 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	45,352	19.87	41.38	31.42	7.32
Gender	Female	21,473	18.21	44.11	32.50	5.17
	Male	23,862	21.38	38.92	30.45	9.25
Ethnicity	Hispanic or Latino					
	Ethnicity	8,608	40.14	44.71	13.68	1.46
	Asian	767	15.65	35.98	34.68	13.69
	Native Hawaiian or Other Pacific Islander	666	40.69	45.50	13.36	0.45
	Black or African					
	American	550	47.64	38.18	12.73	1.45
	American Indian or Alaska Native	426	47.18	41.78	11.03	
	White	32,941	13.50	40.56	36.92	9.02
	Other	1,394	18.51	42.32	31.42	7.75
Limited English Proficiency	No	41,853	16.33	41.92	33.83	7.92
	Yes	3,499	62.22	34.98	2.57	0.23
Economic Disadvantage	No	34,495	14.76	40.91	35.58	8.76
	Yes	10,857	36.12	42.88	18.22	2.77
Special Education	No	40,949	15.52	42.17	34.27	8.04
	Yes	4,403	60.32	34.04	4.95	0.68

Table K.4. Math Grade 10 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	42,087	32.50	39.71	23.32	4.48
Gender	Female	19,911	30.67	43.86	22.48	2.99
	Male	22,167	34.15	35.98	24.06	5.81
Ethnicity	Hispanic or Latino					
	Ethnicity	7,878	55.46	34.70	8.81	1.03
	Asian	757	25.89	35.67	27.21	11.23
	Native Hawaiian or Other Pacific Islander	615	57.07	35.12	6.50	1.30
	Black or African					
	American	553	63.29	30.38	5.79	0.54
	American Indian or Alaska Native	375	57.60	36.80	5.07	0.53
	White	30,675	25.48	41.33	27.80	5.39
	Other	1,234	30.96	41.00	23.74	4.29
Limited English Proficiency	No	39,401	29.33	41.11	24.79	4.78
	Yes	2,686	79.04	19.14	1.75	0.07
Economic Disadvantage	No	32,629	27.09	40.99	26.59	5.33
	Yes	9,458	51.17	35.29	12.01	1.52
Special Education	No	38,270	28.03	41.77	25.34	4.86
	Yes	3,817	77.34	19.02	2.99	0.65

Table K.5. Reading Grade 9 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	46,570	15.45	43.94	30.14	10.47
Gender	Female	22,144	10.89	44.13	32.76	12.22
	Male	24,406	19.60	43.79	27.76	8.86
Ethnicity	Hispanic or Latino					
	Ethnicity	9,006	28.41	51.19	17.26	3.14
	Asian	783	12.01	42.02	32.06	13.92
	Native Hawaiian or Other Pacific Islander	671	29.66	54.40	13.56	2.38
	Black or African					
	American	574	32.40	48.08	15.33	4.18
	American Indian or Alaska Native	468	34.83	50.43	12.82	1.92
	White	33,628	11.20	41.77	34.3	12.74
	Other	1,440	15.76	41.81	32.01	10.42
Limited English Proficiency	No	42,898	12.63	43.65	32.37	11.35
	Yes	3,672	48.34	47.39	4.17	0.11
Economic Disadvantage	No	35,237	11.99	42.22	33.54	12.25
	Yes	11,333	26.21	49.29	19.59	4.91
Special Education	No	42,014	12.01	43.85	32.63	11.50
	Yes	4,556	47.12	44.75	7.18	0.94

Table K.6. Reading Grade 10 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	42,929	23.27	35.22	34.38	7.13
Gender	Female	20,388	16.54	37.76	38.44	7.25
	Male	22,532	29.36	32.93	30.70	7.01
Ethnicity	Hispanic or Latino					
	Ethnicity	8,148	38.71	38.82	20.04	2.43
	Asian	765	21.18	32.16	37.39	9.28
	Native Hawaiian or Other Pacific Islander	643	40.59	41.37	17.26	0.78
	Black or African					
	American	562	45.73	36.12	16.73	1.42
	American Indian or Alaska Native	397	43.32	40.30	15.11	1.26
	White	31,169	18.30	34.22	38.88	8.6
	Other	1,245	22.57	33.41	36.71	7.31
Limited English Proficiency	No	40,166	20.36	35.61	36.42	7.61
	Yes	2,763	65.58	29.61	4.67	0.14
Economic Disadvantage	No	33,182	19.44	34.35	37.92	8.30
	Yes	9,747	36.32	38.21	22.34	3.14
Special Education	No	39,018	19.65	35.55	37.04	7.76
	Yes	3,911	59.37	31.99	7.85	0.79

Table K.7. Science Grade 9 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	46,392	30.34	30.40	28.50	10.76
Gender	Female	22,034	28.73	33.23	29.23	8.81
	Male	24,338	31.79	27.85	27.85	12.52
Ethnicity	Hispanic or Latino					
	Ethnicity	8,986	53.31	29.69	14.12	2.88
	Asian	775	24.26	31.48	29.29	14.97
	Native Hawaiian or Other Pacific Islander	689	55.73	29.32	13.06	1.89
	Black or African					
	American	582	56.36	28.01	12.89	2.75
	American Indian or Alaska Native	463	52.05	32.83	14.47	0.65
	White	33,451	23.04	30.56	33.13	13.26
	Other	1,446	30.15	31.12	28.56	10.17
Limited English Proficiency	No	42,722	26.44	31.26	30.64	11.67
	Yes	3,670	75.75	20.41	3.68	0.16
Economic Disadvantage	No	35,116	24.87	30.56	31.84	12.73
	Yes	11,276	47.37	29.9	18.11	4.61
Special Education	No	41,851	26.04	31.31	30.87	11.77
	Yes	4,541	69.92	22.00	6.65	1.43

Table K.8. Science Grade 10 Performance Level Distribution

	Test Group	N	Below Proficient	Approaching Proficient	Proficient	Highly Proficient
All	Students Scored	42,539	38.85	31.16	25.18	4.81
Gender	Female	20,188	36.51	32.64	27.28	3.57
	Male	22,342	40.96	29.83	23.29	5.91
Ethnicity	Hispanic or Latino					
	Ethnicity	8,049	56.86	28.97	12.76	1.40
	Asian	756	33.20	28.57	30.29	7.94
	Native Hawaiian or Other Pacific Islander	635	64.25	26.77	7.87	1.10
	Black or African					
	American	562	60.68	29.18	9.79	0.36
	American Indian or Alaska Native	387	59.43	29.20	10.59	0.78
	White	30,912	33.23	31.89	29.10	5.78
	Other	1,238	36.11	32.63	25.53	5.74
Limited English Proficiency	No	39,794	36.34	31.87	26.66	5.13
	Yes	2,745	75.23	20.87	3.750	0.15
Economic	No	32,862	34.63	31.81	27.97	5.59
Disadvantage	Yes	9,677	53.17	28.96	15.74	2.14
Special	No	38,665	35.70	31.92	27.16	5.22
Education	Yes	3,874	70.31	23.59	5.47	0.62

Appendix L: Principal Components Scree Plots

Figure L.1. English Grade 9 Principal Components Scree Plot

Figure L.3. Math Grade 9 Principal Components Scree Plot

Figure L.2. English Grade 10 Principal Components Scree Plot

Figure L.4. Math Grade 10 Principal Components Scree Plot

Figure L.5. Reading Grade 9 Principal Components Scree Plot

Figure L.7. Science Grade 9 Principal Components Scree Plot

Figure L.6. Reading Grade 10 Principal Components Scree Plot

Figure L.8. Science Grade 10 Principal Components Scree Plot

Appendix M: Subscore Correlations

Table M.1. English Correlations of Total Score and Subscores

Grade	Subdomain	English Total	Conventions of Standard English	Knowledge of Language	Production of Writing
9	Total	1.00			
	Conventions of Standard English	0.87	1.00		
	Knowledge of Language	0.69	0.56	1.00	
	Production of Writing	0.97	0.75	0.62	1.00
10	Total	1.00			
	Conventions of Standard English	0.80	1.00		
	Knowledge of Language	0.74	0.56	1.00	
	Production of Writing	0.97	0.70	0.65	1.00

Table M.2. Reading Correlations of Total Score and Subscores

Grade	Subdomain	Reading Total	Key Ideas	Craft and Structure	Integration of Knowledge and Ideas
9	Total	1.00			
	Key Ideas	0.93	1.00		
	Craft and Structure	0.90	0.73	1.00	
	Integration of Knowledge and Ideas	0.63	0.52	0.49	1.00
10	Total	1.00			
	Key Ideas	0.92	1.00		
	Craft and Structure	0.90	0.73	1.00	
	Integration of Knowledge and Ideas	0.73	0.60	0.60	1.00

Table M.3. Math Correlations of Total Score and Subscores

Grade	Subdomain	Math Total	Number and Quantity	Algebra	Functions Geometry		Statistics and Probability
9	Total	1.00	-				
	Algebra	0.82	-	1.00			
	Functions	0.88	-	0.68	1.00		
	Geometry	0.81	-	0.63	0.65	1.00	
	Statistics and Probability	0.82	-	0.63	0.67	0.62	1.00
10	Total	1.00					
	Number and Quantity	0.72	1.00				
	Algebra	0.79	0.53	1.00			
	Functions	0.74	0.53	0.57	1.00		
	Geometry	0.81	0.55	0.60	0.58	1.00	
	Statistics and Probability	0.69	0.46	0.52	0.48	0.52	1.00

Table M.4. Science Correlations of Total Score and Subscores

Grade	Subdomain	Science Total	Gathering \& Investigating	Developing Models	Using Mathematical Thinking	Construct Explanation
9	Total	1.00				
	Gathering \& Investigating	0.79	1.00			
	Developing Models	0.78	0.54	1.00		
	Using Mathematical Thinking	0.79	0.57	0.53	1.00	
	Construct Explanation	0.80	0.53	0.53	0.53	1.00
10	Total	1.00				
	Gathering \& Investigating	0.76	1.00			
	Developing Models	0.76	0.47	1.00		
	Using Mathematical Thinking	0.68	0.45	0.40	1.00	
	Construct Explanation	0.55	0.47	0.34	0.35	1.00

[^0]: * It should be noted that sub claims are not reported on individual student reports but form an important structural element within the blueprints. They are included in this technical report for completeness.

[^1]: Note: ITC=Item Total Correlation

[^2]: ${ }^{1}$ Too few items to calculate Cronbach's alpha

[^3]: ${ }^{2}$ Austin, P.C. (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 46(3), 399-424.

